The binding and catalytic functions of proteins are generally mediated by a small number of functional residues held in place by the overall protein structure. Here, we describe deep learning approaches for scaffolding such functional sites without needing to prespecify the fold or secondary structure of the scaffold. The first approach, “constrained hallucination,” optimizes sequences such that their predicted structures contain the desired functional site. The second approach, “inpainting,” starts from the functional site and fills in additional sequence and structure to create a viable protein scaffold in a single forward pass through a specifically trained RoseTTAFold network. We use these two methods to design candidate immunogens, receptor traps, metalloproteins, enzymes, and protein-binding proteins and validate the designs using a combination of in silico and experimental tests.
Protein design has had success in finding sequences that fold into a desired conformation, but designing functional proteins remains challenging. Wang et al . describe two deep-learning methods to design proteins that contain prespecified functional sites. In the first, they found sequences predicted to fold into stable structures that contain the functional site. In the second, they retrained a structure prediction network to recover the sequence and full structure of a protein given only the functional site. The authors demonstrate their methods by designing proteins containing a variety of functional motifs. —VV
Deep-learning methods enable the scaffolding of desired functional residues within a well-folded designed protein.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.