23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondria-Targeted Antioxidant SS-31 is a Potential Novel Ophthalmic Medication for Neuroprotection in Glaucoma

      other

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glaucoma is the second leading cause of irreversible blindness and a neurodegenerative disease with a complex pathogenesis. Increasing evidence suggests that oxidative stress and mitochondrial dysfunction have crucial roles in most neurodegenerative diseases such as glaucoma. The conventional clinical treatment for glaucoma is lowering the intraocular pressure (IOP). Some patients have normal IOP, whereas other patients appear to obtain adequate control of IOP after filtration surgery or medication. However, these patients still experience progressive visual field loss. Vision field loss in glaucoma is attributed to retinal ganglion cell (RGC) apoptosis. Many recent researches demonstrated that the link between mitochondrial dysfunction and oxidative stress was a major cause of RGCs apoptosis. How oxidative stress leads to RGCs apoptosis in glaucoma is unclear but may involve the neurotoxic effects of oxidative stress-induced mitochondrial dysfunction and/or damage from reactive oxygen species (ROS). Investigations are needed concerning the mitochondria as effective targets for potential therapeutic interventions to maintain mitochondrial function and reduce oxidative stress, and thereby delay or stop RGC loss and prolong visual function. The mitochondria-targeted antioxidant Szeto-Schiller (SS) peptide is a candidate molecule. Szeto-Schiller-31 (H-D-Arg-Dmt-Lys-Phe-NH2) is an attractive mitochondria-targeted antioxidant that can protect the mitochondria and RGCs against oxidative damage. Therefore, we suggest SS-31 as a novel neuroprotective ophthalmic drug for protecting RGCs in glaucoma.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondria and apoptosis.

          D Green, J Reed (1998)
          A variety of key events in apoptosis focus on mitochondria, including the release of caspase activators (such as cytochrome c), changes in electron transport, loss of mitochondrial transmembrane potential, altered cellular oxidation-reduction, and participation of pro- and antiapoptotic Bcl-2 family proteins. The different signals that converge on mitochondria to trigger or inhibit these events and their downstream effects delineate several major pathways in physiological cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade.

            We report here the purification of the third protein factor, Apaf-3, that participates in caspase-3 activation in vitro. Apaf-3 was identified as a member of the caspase family, caspase-9. Caspase-9 and Apaf-1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome c and dATP, an event that leads to caspase-9 activation. Activated caspase-9 in turn cleaves and activates caspase-3. Depletion of caspase-9 from S-100 extracts diminished caspase-3 activation. Mutation of the active site of caspase-9 attenuated the activation of caspase-3 and cellular apoptotic response in vivo, indicating that caspase-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury.

              Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.
                Bookmark

                Author and article information

                Journal
                Med Hypothesis Discov Innov Ophthalmol
                mehdiophth
                Medical Hypothesis, Discovery and Innovation in Ophthalmology
                Medical Hypothesis, Discovery & Innovation Ophthalmology
                2322-4436
                2322-3219
                Autumn 2015
                : 4
                : 3
                : 120-126
                Affiliations
                [1]Department of Ophthalmology, the Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, China.
                Author notes
                Dr Ling Yu, MD, Department of Ophthalmology, the Affiliated Hospital of Luzhou Medical college, Luzhou, Sichuan Province, 646000, China. E-mail address: oculistlingyu@hotmail.com; Phone: +86 830 3165631; FAX: +86 830 2392753
                Article
                4921212
                27350953
                2dbf41d5-bc2f-450e-8af6-e87889fe6351
                ©2015, Med Hypothesis Discov Innov Ophthalmol.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Hypothesis

                glaucoma,mitochondria-targeted antioxidant ss-31,neuroprotection,oxidative stress mitochondrial dysfunction

                Comments

                Comment on this article