21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An efficient Trojan delivery of tetrandrine by poly(N-vinylpyrrolidone)-block-poly(ε-caprolactone) (PVP-b-PCL) nanoparticles shows enhanced apoptotic induction of lung cancer cells and inhibition of its migration and invasion.

      International Journal of Nanomedicine
      Dove Medical Press Ltd.
      lung cancer, nanoparticles, poly(N-vinylpyrrolidone), tetrandrine

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Earlier studies have demonstrated the promising antitumor effect of tetrandrine (Tet) against a series of cancers. However, the poor solubility of Tet limits its application, while its hydrophobicity makes Tet a potential model drug for nanodelivery systems. We report on a simple way of preparing drug-loaded nanoparticles formed by amphiphilic poly(N-vinylpyrrolidone)-block-poly(ε-caprolactone) (PVP-b-PCL) copolymers with Tet as a model drug. The mean diameters of Tet-loaded PVP-b-PCL nanoparticles (Tet-NPs) were between 110 nm and 125 nm with a negative zeta potential slightly below 0 mV. Tet was incorporated into PVP-b-PCL nanoparticles with high loading efficiency. Different feeding ratios showed different influences on sizes, zeta potentials, and the drug loading efficiencies of Tet-NPs. An in vitro release study shows the sustained release pattern of Tet-NPs. It is shown that the uptake of Tet-NPs is mainly mediated by the endocytosis of nanoparticles, which is more efficient than the filtration of free Tet. Further experiments including fluorescence activated cell sorting and Western blotting indicated that this Trojan strategy of delivering Tet in PVP-b-PCL nanoparticles via endocytosis leads to enhanced induction of apoptosis in the non-small cell lung cancer cell A549 line; enhanced apoptosis is achieved by inhibiting the expression of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, Tet-NPs more efficiently inhibit the ability of cell migration and invasion than free Tet by down-regulating matrix metalloproteinases (MMP)-2 and MMP-9, as well as up-regulating tissue inhibitor of MMP-3 (TIMP-3). Therefore, data from this study not only confirms the potential of Tet in treating lung cancer but also offers an effective way of improving the anticancer efficiency of Tet by nanodrug delivery systems.

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A simple technique for quantifying apoptosis in 96-well plates

            Background Analyzing apoptosis has been an integral component of many biological studies. However, currently available methods for quantifying apoptosis have various limitations including multiple, sometimes cell-damaging steps, the inability to quantify live, necrotic and apoptotic cells at the same time, and non-specific detection (i.e. "false positive"). To overcome the shortcomings of current methods that quantify apoptosis in vitro and to take advantage of the 96-well plate format, we present here a modified ethidium bromide and acridine orange (EB/AO) staining assay, which may be performed entirely in a 96-well plate. Our method combines the advantages of the 96-well format and the conventional EB/AO method for apoptotic quantification. Results We compared our method and the conventional EB/AO method for quantifying apoptosis of suspension cells (Jurkat) and adherent cells (A375) under normal growth and apoptosis-inducing conditions. We found that our new EB/AO method achieved quantification results comparable to those produced using the conventional EB/AO method for both suspension and adherent cells. Conclusion By eliminating the detaching and washing steps, our method drastically reduces the time needed to perform the test, minimizes damage to adherent cells, and decreases the possibility of losing floating cells. Overall, our method is an improvement over the currently available techniques especially for adherent cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes.

              Steric stabilization of the surface of liposomes by a PEG conjugated lipid results in reduced recognition of the liposomes by the cells of the mononuclear phagocyte system and consequently extended their circulation times (t(1/2) approximately 20h in rat). Recently, we reported on the "accelerated blood clearance phenomenon", causing "invisible" PEGylated liposomes to be cleared very rapidly from the circulation upon repeated injection. In addition, we reported that certain serum factor(s) secreted into the blood after the first dose of PEGylated liposomes play an essential role in the phenomenon. The aim of the present study was to identify the major serum protein(s) responsible for the phenomenon and to unravel their mode of action. The amount of protein binding to PEGylated liposomes during incubation with serum hardly correlated with the extent of the phenomenon. PEGylated liposomes incubated with serum obtained from rats pre-injected 5 days before with the same liposomes showed a much more complex pattern of bound proteins than when incubated with naïve serum, as revealed by 2D-PAGE and SDS-PAGE. Subsequent analysis with LC-MS/MS and Western blot showed that the major pre-treated serum protein binding to PEGylated liposomes was IgM. Semi-quantitative analysis showed that larger amount of IgM bound to PEGylated liposomes compared to conventional liposomes. It was further demonstrated that PEGylated liposomes could activate the complement system due to IgM binding when incubated in serum from rats pre-injected with PEGylated liposomes, while conventional liposomes were not. These findings suggest that the selective binding of IgM to the second injected PEGylated liposomes and the subsequent complement activation by IgM resulted in the accelerated clearance and enhanced hepatic uptake of the second injected PEGylated liposomes. Based on the results described here, we are drawing attention to the potential occurrence of unexpected immune reactions upon intravenous administration of PEGylated liposomes or other particles and, by extension, PEGylated proteins and DNAs.
                Bookmark

                Author and article information

                Journal
                24403829
                3883593
                10.2147/IJN.S55541

                lung cancer,nanoparticles,poly(N-vinylpyrrolidone),tetrandrine

                Comments

                Comment on this article