44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seizure-Induced Oxidative Stress in Temporal Lobe Epilepsy

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An insult to the brain (such as the first seizure) causes excitotoxicity, neuroinflammation, and production of reactive oxygen/nitrogen species (ROS/RNS). ROS and RNS produced during status epilepticus (SE) overwhelm the mitochondrial natural antioxidant defense mechanism. This leads to mitochondrial dysfunction and damage to the mitochondrial DNA. This in turn affects synthesis of various enzyme complexes that are involved in electron transport chain. Resultant effects that occur during epileptogenesis include lipid peroxidation, reactive gliosis, hippocampal neurodegeneration, reorganization of neural networks, and hypersynchronicity. These factors predispose the brain to spontaneous recurrent seizures (SRS), which ultimately establish into temporal lobe epilepsy (TLE). This review discusses some of these issues. Though antiepileptic drugs (AEDs) are beneficial to control/suppress seizures, their long term usage has been shown to increase ROS/RNS in animal models and human patients. In established TLE, ROS/RNS are shown to be harmful as they can increase the susceptibility to SRS. Further, in this paper, we review briefly the data from animal models and human TLE patients on the adverse effects of antiepileptic medications and the plausible ameliorating effects of antioxidants as an adjunct therapy.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive astrocytes: cellular and molecular cues to biological function.

          For several decades, the reactive gliosis that occurs after an injury to the CNS has been considered one of the major impediments to axonal regeneration. Nevertheless, recent studies have suggested that in certain conditions, reactive astrocytes may provide a permissive substratum to support axonal regrowth. The important criteria, allowing for the distinction between permissive and non-permissive gliosis, are the ultrastructural 3D organization of the scar and more importantly the recognition molecules expressed by reactive astrocytes. Reactive astrocytes express surface molecules and produce various neurotrophic factors and cytokines. The latter in turn might modulate the production of recognition molecules by reactive astrocytes, allowing them to support post-lesional axonal regrowth. Although numerous recent articles have focused on cytokines and cell adhesion molecules, scant attention has been paid to reactive astrocytes. Reactive astrocytes should be considered a key element, like neurons, of a dynamic environment, thus forming with neurons a functional unit involved in homeostasis, plasticity and neurotransmission. Attempts are in progress to identify molecular markers for reactive astrocytes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitric oxide synthases in mammals.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The dual role of astrocyte activation and reactive gliosis.

              Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                20 January 2015
                : 2015
                : 745613
                Affiliations
                Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
                Author notes
                *Thimmasettappa Thippeswamy: tswamy@ 123456iastate.edu

                Academic Editor: Mahendra P. Singh

                Author information
                http://orcid.org/0000-0002-2508-6803
                http://orcid.org/0000-0002-3352-6397
                http://orcid.org/0000-0002-1224-5932
                http://orcid.org/0000-0002-9326-1896
                Article
                10.1155/2015/745613
                4306378
                b1b4090d-93c7-42a4-987a-192b5460afa8
                Copyright © 2015 Sreekanth Puttachary et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 June 2014
                : 11 September 2014
                : 11 September 2014
                Categories
                Review Article

                Comments

                Comment on this article