2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exogenous Melatonin Positively Regulates Rice Root Growth through Promoting the Antioxidant System and Mediating the Auxin Signaling under Root-Zone Hypoxia Stress

      , , , , , , , ,
      Agronomy
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Root growth and development is an important indicator of root-zone hypoxia tolerance in rice. Melatonin has been suggested to function as a crucial regulator in modulating root growth and improving plant abiotic stress resistance. To explore the role and potential mechanism of melatonin in regulating the root growth under root-zone hypoxia stress, rice seedlings were treated with hypoxia (oxygen level at 0.9–2.1 mg·L−1), combined with or without a 20 μmol·L−1 melatonin pretreatment under a hydroponic condition. The results showed that the exogenous application of melatonin significantly alleviated the inhibition of the rice root growth that was induced by the hypoxia stress. The morphological–phenotypic analyses showed that after the melatonin pretreatment, the primary root length, lateral root length, and lateral root density increased by 11.6%, 8.2%, and 36.8%, respectively, under hypoxia stress. The physiological–biochemical analyses showed that the exogenous melatonin significantly increased the root activity and O2 influx in the root meristem zone under hypoxia stress to 1.5 times that observed in the hypoxia stress group. The melatonin pretreatment significantly improved the activity of superoxide dismutase (SOD) and decreased the accumulation of superoxide anions (O2•−) in the seedling roots, whereas it increased the content of hydrogen peroxide (H2O2) under hypoxia stress. The exogenous melatonin pretreatment significantly increased the content of indole-3-acetic acid (IAA) by 51.5% in the rice roots compared to the plants without melatonin pretreatment under hypoxia stress. Quantitative real-time PCR (qRT-PCR) analyses revealed that the melatonin pretreatment induced the expression of OsPIN1a~1d, OsPIN8, OsPIN9, OsAUX1, OsARF19, and OsGH3-2 in the rice seedling roots under aerated conditions, whereas it only obviously upregulated the expression of OsPIN1b, OsPIN2, and OsGH3-2 under hypoxia stress. These results indicate that melatonin positively regulates root growth and development under hypoxia stress, through improving the antioxidant system and directly or indirectly activating the auxin signaling pathway. This study demonstrates the important role of melatonin to modulate root growth under hypoxia stress, providing a new strategy for improving hypoxia tolerance.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: not found
          • Article: not found

          Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress☆

            Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H2O2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H2O2 and on the role of H2O2 in redox signaling under physiological conditions (1–10 nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H2O2 (>100 nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H2O2 be assayed in the biological setting? What are the metabolic sources and sinks of H2O2? What is the role of H2O2 in redox signaling and oxidative stress?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin as an antioxidant: under promises but over delivers.

              Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
                Bookmark

                Author and article information

                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                February 2023
                January 28 2023
                : 13
                : 2
                : 386
                Article
                10.3390/agronomy13020386
                0c4ab361-95c4-42e2-8aa3-c54331a4d663
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article