17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of Yes-Associated Protein Induces the Apoptosis While Inhibits the Proliferation of Human Periodontal Ligament Stem Cells through Crosstalk between Erk and Bcl-2 Signaling Pathways

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: The purpose of this study was to provide an insight into the biological effects of knockdown Yes-associated protein (YAP) on the proliferation and apoptosis of human periodontal ligament stem cells (h-PDLSCs). Methods: Immunofluorescence and Western blot were used to evaluate Hippo-YAP signaling expression level. Enhanced green fluorescence protein lentiviral vector was constructed to down-regulate YAP in h-PDLSCs. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the interfering efficiency of YAP expression. The proliferation activity was detected by EdU staining. Analysis of apoptosis in h-PDLSCs was done through Annexin V-APC staining, while cell cycle analysis was detected by flow cytometry. Cellular senescence was analyzed by β-galactosidase activity detection. The expression of elements in signaling pathways related with proliferation and apoptosis was detected by Western blot. Results: YAP was located in nucleus and cytoplasm. After the lentivirus transfection, the expression of YAP mRNA and protein was significantly reduced (P<0.001). When YAP was knocked down, the proliferation activity of h-PDLSCs was inhibited; the early & late apoptosis rates increased; the proportion of cells in G1 phases increased (P<0.05), while that in G2 and S phase decreased (P<0.05); cellular senescence was accelerated (P<0.01); ERK and its target proteins P-P90RSK and P-MEK were reduced while Bcl-2 family members increased. Conclusion: Knockdown of YAP inhibits the proliferation activity and induces apoptosis of h-PDLSCs with the involvement of Hippo pathway and has a crosstalk between Erk and Bcl-2 signaling pathways.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Hippo signaling: growth control and beyond.

          The Hippo pathway has emerged as a conserved signaling pathway that is essential for the proper regulation of organ growth in Drosophila and vertebrates. Although the mechanisms of signal transduction of the core kinases Hippo/Mst and Warts/Lats are relatively well understood, less is known about the upstream inputs of the pathway and about the downstream cellular and developmental outputs. Here, we review recently discovered mechanisms that contribute to the dynamic regulation of Hippo signaling during Drosophila and vertebrate development. We also discuss the expanding diversity of Hippo signaling functions during development, discoveries that shed light on a complex regulatory system and provide exciting new insights into the elusive mechanisms that regulate organ growth and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke.

            We previously evaluated the short-term follow-up preliminary data of mesenchymal stem cells (MSCs) transplantation in patients with ischemic stroke. The present study was conducted to evaluate the long-term safety and efficacy of i.v. MSCs transplantation in a larger population. To accomplish this, we performed an open-label, observer-blinded clinical trial of 85 patients with severe middle cerebral artery territory infarct. Patients were randomly allocated to one of two groups, those who received i.v. autologous ex vivo cultured MSCs (MSC group) or those who did not (control group), and followed for up to 5 years. Mortality of any cause, long-term side effects, and new-onset comorbidities were monitored. Of the 52 patients who were finally included in this study, 16 were the MSC group and 36 were the control group. Four (25%) patients in the MSC group and 21 (58.3%) in the control group died during the follow-up period, and the cumulative surviving portion at 260 weeks was 0.72 in the MSC group and 0.34 in the control group (log-rank; p = .058). Significant side effects were not observed following MSC treatment. The occurrence of comorbidities including seizures and recurrent vascular episodes did not differ between groups. When compared with the control group, the follow-up modified Rankin Scale (mRS) score was decreased, whereas the number of patients with a mRS of 0-3 increased in the MSC group (p = .046). Clinical improvement in the MSC group was associated with serum levels of stromal cell-derived factor-1 and the degree of involvement of the subventricular region of the lateral ventricle. Intravenous autologous MSCs transplantation was safe for stroke patients during long-term follow-up. This therapy may improve recovery after stroke depending on the specific characteristics of the patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal.

              Transforming growth factor-beta (TGFbeta) family members regulate many developmental and pathological events through Smad transcriptional modulators. How nuclear accumulation of Smad is coupled to the transcriptional machinery is poorly understood. Here we demonstrate that in response to TGFbeta stimulation the transcriptional regulator TAZ binds heteromeric Smad2/3-4 complexes and is recruited to TGFbeta response elements. In human embryonic stem cells TAZ is required to maintain self-renewal markers and loss of TAZ leads to inhibition of TGFbeta signalling and differentiation into a neuroectoderm lineage. In the absence of TAZ, Smad2/3-4 complexes fail to accumulate in the nucleus and activate transcription. Furthermore, TAZ, which itself engages in shuttling, dominantly controls Smad nucleocytoplasmic localization and can be retained in the nucleus by transcriptional co-factors such as ARC105, a component of the Mediator complex. TAZ thus defines a hierarchical system regulating Smad nuclear accumulation and coupling to the transcriptional machinery.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2017
                19 September 2017
                : 14
                : 12
                : 1231-1240
                Affiliations
                [1 ]School of Stomatology, Shandong University, Jinan, China;
                [2 ]Shandong provincial key laboratory of oral tissue regeneration , Jinan, China;
                [3 ]Qilu hospital of Shandong University, Jinan, China.
                Author notes
                ✉ Corresponding authors: Weiting Gu ( weitinggu@ 123456gmail.com ) No. 107, Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China Tel./Fax: +86-531-82169268 Xin Xu ( xinxu@ 123456sdu.edu.cn ) No. 44-1, Wenhua Xi Road, Jinan, Shandong, 250012 P.R. China Tel./Fax: +86-531-88382923

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv14p1231
                10.7150/ijms.20504
                5666556
                37199ae2-4475-4900-921b-447c8276d733
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 10 April 2017
                : 7 August 2017
                Categories
                Research Paper

                Medicine
                yes-associated protein (yap),human periodontal ligament stem cells (h-pdlscs),proliferation,apoptosis.

                Comments

                Comment on this article