123
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adaptation, migration or extirpation: climate change outcomes for tree populations.

      Evolutionary Applications
      Wiley
      gene flow, selection, species distribution models, conifer, forest, ecological genetics, genomics, population

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Species distribution models predict a wholesale redistribution of trees in the next century, yet migratory responses necessary to spatially track climates far exceed maximum post-glacial rates. The extent to which populations will adapt will depend upon phenotypic variation, strength of selection, fecundity, interspecific competition, and biotic interactions. Populations of temperate and boreal trees show moderate to strong clines in phenology and growth along temperature gradients, indicating substantial local adaptation. Traits involved in local adaptation appear to be the product of small effects of many genes, and the resulting genotypic redundancy combined with high fecundity may facilitate rapid local adaptation despite high gene flow. Gene flow with preadapted alleles from warmer climates may promote adaptation and migration at the leading edge, while populations at the rear will likely face extirpation. Widespread species with large populations and high fecundity are likely to persist and adapt, but will likely suffer adaptational lag for a few generations. As all tree species will be suffering lags, interspecific competition may weaken, facilitating persistence under suboptimal conditions. Species with small populations, fragmented ranges, low fecundity, or suffering declines due to introduced insects or diseases should be candidates for facilitated migration.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: found

          Ecological and Evolutionary Responses to Recent Climate Change

          Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Introduction to Quantitative Genetics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conserving biodiversity under climate change: the rear edge matters.

              Modern climate change is producing poleward range shifts of numerous taxa, communities and ecosystems worldwide. The response of species to changing environments is likely to be determined largely by population responses at range margins. In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged. We review recent findings from the fossil record, phylogeography and ecology to illustrate that rear edge populations are often disproportionately important for the survival and evolution of biota. Their ecological features, dynamics and conservation requirements differ from those of populations in other parts of the range, and some commonly recommended conservation practices might therefore be of little use or even counterproductive for rear edge populations.
                Bookmark

                Author and article information

                Journal
                25567494
                3352395
                10.1111/j.1752-4571.2007.00013.x

                gene flow,selection,species distribution models,conifer,forest,ecological genetics,genomics,population

                Comments

                Comment on this article