2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Jia-Ji Electro-Acupuncture Improves Locomotor Function With Spinal Cord Injury by Regulation of Autophagy Flux and Inhibition of Necroptosis

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jia-Ji electro-acupuncture (EA) has been widely applied in clinic to exhibit curative effects on spinal cord injury (SCI). However, its underlying mechanisms leading to improvement of motor function after SCI remain unclear. Allen’s method was made by NYU Impactor M-III equipment to create the SCI rats model. Rats were randomly divided into four groups: Sham (only laminectomy), Model (SCI group), EA (SCI + Jia-Ji EA treatment), EA + CQ (SCI + Jia-Ji EA treatment + inhibitor chloroquine). Basso-Beattie-Bresnahan assessment showed improvement of hind limb motor function after Jia-Ji electro-acupuncture treatment. Histological change of injured spinal cord tissue was alleviated after treatment, observed by hematoxylin-eosin and Nissl staining. The mRNA and protein expression levels of RIPK1, RIPK3 and MLKL were decreased in EA group. Besides, the increased expression of LC3 and reduced expression of P62 after treatment compared with Model group, confirmed that Jia-Ji electro-acupuncture could enhance the autophagy flux. Electron microscopy imaging showed increasing the number of lysosomes, autophagosomes, and autolysosomes after Jia-Ji electro-acupuncture treatment. Furthermore, inhibition of lysosome function with CQ led to partly eliminate the effect of EA on reducing necroptosis. These data make the case that Jia-Ji electro-acupuncture treatment may improve locomotor function by promoting autophagy flux and inhibiting necroptosis.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

          Summary Background Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. Findings In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30–30·30 million) new cases of TBI and 0·93 million (0·78–1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331–412) per 100 000 population for TBI and 13 (11–16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40–57·62 million) and of SCI was 27·04 million (24·98–30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (−0·2% [–2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (−3·6% [–7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0–10·4 million) YLDs and SCI caused 9·5 million (6·7–12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82–141) per 100 000 for TBI and 130 (90–170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A sensitive and reliable locomotor rating scale for open field testing in rats.

            Behavioral assessment after spinal cord contusion has long focused on open field locomotion using modifications of a rating scale developed by Tarlov and Klinger (1954). However, on-going modifications by several groups have made interlaboratory comparison of locomotor outcome measures difficult. The purpose of the present study was to develop an efficient, expanded, and unambiguous locomotor rating scale to standardize locomotor outcome measures across laboratories. Adult rats (n = 85) were contused at T7-9 cord level with an electromagnetic or weight drop device. Locomotor behavior was evaluated before injury, on the first or second postoperative day, and then for up to 10 weeks. Scoring categories and attributes were identified, operationally defined, and ranked based on the observed sequence of locomotor recovery patterns. These categories formed the Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale. The data indicate that the BBB scale is a valid and predictive measure of locomotor recovery able to distinguish behavioral outcomes due to different injuries and to predict anatomical alterations at the lesion center. Interrater reliability tests indicate that examiners with widely varying behavioral testing experience can apply the scale consistently and obtain similar scores. The BBB Locomotor Rating Scale offers investigators a more discriminating measure of behavioral outcome to evaluate treatments after spinal cord injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of RIP1 kinase as a specific cellular target of necrostatins.

              Necroptosis is a cellular mechanism of necrotic cell death induced by apoptotic stimuli in the form of death domain receptor engagement by their respective ligands under conditions where apoptotic execution is prevented. Although it occurs under regulated conditions, necroptotic cell death is characterized by the same morphological features as unregulated necrotic death. Here we report that necrostatin-1, a previously identified small-molecule inhibitor of necroptosis, is a selective allosteric inhibitor of the death domain receptor-associated adaptor kinase RIP1 in vitro. We show that RIP1 is the primary cellular target responsible for the antinecroptosis activity of necrostatin-1. In addition, we show that two other necrostatins, necrostatin-3 and necrostatin-5, also target the RIP1 kinase step in the necroptosis pathway, but through mechanisms distinct from that of necrostatin-1. Overall, our data establish necrostatins as the first-in-class inhibitors of RIP1 kinase, the key upstream kinase involved in the activation of necroptosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                22 January 2021
                2020
                : 14
                : 616864
                Affiliations
                [1] 1Acupuncture Department, Heilongjiang University of Chinese Medicine , Harbin, China
                [2] 2Harbin Children’s Hospital , Harbin, China
                [3] 3Neurology Department, The First Affiliated Hospital of Harbin Medical University , Harbin, China
                Author notes

                Edited by: Jiehui Jiang, Shanghai University, China

                Reviewed by: Can Martin Zhang, Massachusetts General Hospital and Harvard Medical School, United States; Zhihua Yu, Shanghai University of Traditional Chinese Medicine, China

                *Correspondence: Guan Fulin, fulinguancn@ 123456outlook.com

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.616864
                7862567
                91084ea0-61a5-4cd8-8627-765d91bc5586
                Copyright © 2021 Hongna, Hongzhao, Quan, Delin, Guijun, Xiaolin, Fulin and Zhongren.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 October 2020
                : 29 December 2020
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 37, Pages: 14, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                jia-ji electro-acupuncture,spinal cord injury,motor function repair,autophagy flux,necroptosis,lysosome

                Comments

                Comment on this article