5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of partial thickness articular cartilage injury in an ovine model.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The purpose of this study was to create a controlled partial thickness cartilage lesion in a sheep model, and to provide a foundation to study the natural history of the progression of this lesion. Twenty-eight sheep divided into four groups (1, 12, 24, and 52 weeks, n=7/group) were used in this study. In one stifle, a mechanical tool was used to create a 200 microm partial thickness lesion (1.5x1.5 cm2) on the medial femoral condyle via arthroscopy. Joint fluid was drawn presurgery and after euthanasia for analysis of collage II 3/4 C (long) (C2C). After euthanasia, the condyle was analyzed by gross appearance, confocal laser microscopy (CLM) for cell viability, scanning electronic microscopy (SEM) for surface roughness, Artscan for cartilage stiffness, and histology for cartilage morphology. The gross appearance of the treated area appeared rough, soft, and swollen compared to untreated control over time. CLM demonstrated that the depth of cell death increased to 590 microm at 52 weeks after surgery. SEM demonstrated that the treated area became more irregular over time. Stiffness of the treated area was significantly less than control by 12 weeks after surgery. Histologic analysis demonstrated that the 12, 24, and 52 week groups had significantly poorer histologic scores than the 1 week group. Joint fluid analysis demonstrated that the treatment group at 1 week had significant higher levels of C2C than the pretreatment baseline data. The results of this study demonstrated that partial thickness injury of cartilage continued to propagate and degenerate over time in this sheep model. Options for the prevention or treatment of this lesion may be tested using this model in the future.

          Related collections

          Author and article information

          Journal
          J. Orthop. Res.
          Journal of orthopaedic research : official publication of the Orthopaedic Research Society
          Wiley
          0736-0266
          0736-0266
          Oct 2006
          : 24
          : 10
          Affiliations
          [1 ] Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
          Article
          10.1002/jor.20249
          16894593
          93c003a0-5b3f-445d-bd56-af4b3fe1cea4
          History

          Comments

          Comment on this article