3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Knowledge in Genetics, Molecular Diagnostic Tools, and Treatments for Mantle Cell Lymphomas

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mantle Cell lymphoma (MCL) is a mature B-cell lymphoma with a well-known hallmark genetic alteration in most cases, t (11,14)(q13q32)/ CCND1-IGH. However, our understanding of the genetic and epigenetic alterations in MCL has evolved over the years, and it is now known that translocations involving CCND2, or cryptic insertion of enhancer elements of IGK or IGL gene, can also lead to MCL. On a molecular level, MCL can be broadly classified into two subtypes, conventional MCL (cMCL) and non-nodal MCL (nnMCL), each with different postulated tumor cell origin, clinical presentation and behavior, mutational pattern as well as genomic complexity. This article reviews both the common and rare alterations in MCL on a gene mutational, chromosomal arm, and epigenetic level, in the context of their contribution to the lymphomagenesis and disease evolution in MCL. This article also summarizes the important prognostic factors, molecular diagnostic tools, and treatment options based on the most recent MCL literature.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma

            Background Patients with relapsed or refractory mantle-cell lymphoma who have disease progression during or after the receipt of Bruton’s tyrosine kinase (BTK) inhibitor therapy have a poor prognosis. KTE-X19, an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, may have benefit in patients with relapsed or refractory mantle-cell lymphoma. Methods In a multicenter, phase 2 trial, we evaluated KTE-X19 in patients with relapsed or refractory mantle-cell lymphoma. Patients had disease that had relapsed or was refractory after the receipt of up to five previous therapies; all patients had to have received BTK inhibitor therapy previously. Patients underwent leukapheresis and optional bridging therapy, followed by conditioning chemotherapy and a single infusion of KTE-X19 at a dose of 2×10 6 CAR T cells per kilogram of body weight. The primary end point was the percentage of patients with an objective response (complete or partial response) as assessed by an independent radiologic review committee according to the Lugano classification. Per the protocol, the primary efficacy analysis was to be conducted after 60 patients had been treated and followed for 7 months. Results A total of 74 patients were enrolled. KTE-X19 was manufactured for 71 patients and administered to 68. The primary efficacy analysis showed that 93% (95% confidence interval [CI], 84 to 98) of the 60 patients in the primary efficacy analysis had an objective response; 67% (95% CI, 53 to 78) had a complete response. In an intention-to-treat analysis involving all 74 patients, 85% had an objective response; 59% had a complete response. At a median follow-up of 12.3 months (range, 7.0 to 32.3), 57% of the 60 patients in the primary efficacy analysis were in remission. At 12 months, the estimated progression- free survival and overall survival were 61% and 83%, respectively. Common adverse events of grade 3 or higher were cytopenias (in 94% of the patients) and infections (in 32%). Grade 3 or higher cytokine release syndrome and neurologic events occurred in 15% and 31% of patients, respectively; none were fatal. Two grade 5 infectious adverse events occurred. Conclusions KTE-X19 induced durable remissions in a majority of patients with relapsed or refractory mantle-cell lymphoma. The therapy led to serious and life-threatening toxic effects that were consistent with those reported with other CAR T-cell therapies. (Funded by Kite, a Gilead company; ZUMA-2 ClinicalTrials.gov number, NCT02601313 .)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology.

              The identification of specific genetic alterations as key oncogenic drivers and the development of targeted therapies are together transforming clinical oncology and creating a pressing need for increased breadth and throughput of clinical genotyping. Next-generation sequencing assays allow the efficient and unbiased detection of clinically actionable mutations. To enable precision oncology in patients with solid tumors, we developed Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), a hybridization capture-based next-generation sequencing assay for targeted deep sequencing of all exons and selected introns of 341 key cancer genes in formalin-fixed, paraffin-embedded tumors. Barcoded libraries from patient-matched tumor and normal samples were captured, sequenced, and subjected to a custom analysis pipeline to identify somatic mutations. Sensitivity, specificity, reproducibility of MSK-IMPACT were assessed through extensive analytical validation. We tested 284 tumor samples with previously known point mutations and insertions/deletions in 47 exons of 19 cancer genes. All known variants were accurately detected, and there was high reproducibility of inter- and intrarun replicates. The detection limit for low-frequency variants was approximately 2% for hotspot mutations and 5% for nonhotspot mutations. Copy number alterations and structural rearrangements were also reliably detected. MSK-IMPACT profiles oncogenic DNA alterations in clinical solid tumor samples with high accuracy and sensitivity. Paired analysis of tumors and patient-matched normal samples enables unambiguous detection of somatic mutations to guide treatment decisions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                23 November 2021
                2021
                : 11
                : 739441
                Affiliations
                [1] 1 Department of Pathology, Memorial Sloan Kettering Cancer Center , New York, NY, United States
                [2] 2 Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center , New York, NY, United States
                Author notes

                Edited by: Mina Luqing Xu, Yale University, United States

                Reviewed by: Susanna Akiki, Hamad Medical Corporation, Qatar; Alberto Zamo, Julius Maximilian University of Würzburg, Germany

                *Correspondence: Shenon Sethi, sethis@ 123456mskcc.org

                This article was submitted to Hematologic Malignancies, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2021.739441
                8649949
                9c5d853f-6e4f-4dce-8594-5adcad8399e1
                Copyright © 2021 Sethi, Epstein-Peterson, Kumar and Ho

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 July 2021
                : 29 October 2021
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 87, Pages: 14, Words: 8569
                Funding
                Funded by: Memorial Sloan-Kettering Cancer Center , doi 10.13039/100007052;
                Award ID: P30 CA008748
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                mantle cell lymphoma,genetic,epigenetic,molecular diagnostics,immunochemotherapy,targeted therapy

                Comments

                Comment on this article