28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biochemical Characterization of DNA Damage Checkpoint Complexes: Clamp Loader and Clamp Complexes with Specificity for 5′ Recessed DNA

      research-article
      1 , 1 ,
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17–Rfc2–Rfc3–Rfc4–Rfc5) complex and an RHR heterotrimer (Rad1–Hus1–Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5′ recessed ends whereas RFC preferred 3′ recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes.

          Abstract

          A cell cycle checkpoint complex is shown to bind preferentially to DNA with 5'recessed ends. This activity suggests that the complex might be involved in various DNA maintenance pathways

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism.

          M S Wold (1997)
          Replication protein A [RPA; also known as replication factor A (RFA) and human single-stranded DNA-binding protein] is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination. RPA homologues have been identified in all eukaryotic organisms examined and are all abundant heterotrimeric proteins composed of subunits of approximately 70, 30, and 14 kDa. Members of this family bind nonspecifically to single-stranded DNA and interact with and/or modify the activities of multiple proteins. In cells, RPA is phosphorylated by DNA-dependent protein kinase when RPA is bound to single-stranded DNA (during S phase and after DNA damage). Phosphorylation of RPA may play a role in coordinating DNA metabolism in the cell. RPA may also have a role in modulating gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects.

            Checkpoint-mediated control of replicating chromosomes is essential for preventing cancer. In yeast, Rad53 kinase protects stalled replication forks from pathological rearrangements. To characterize the mechanisms controlling fork integrity, we analyzed replication intermediates formed in response to replication blocks using electron microscopy. At the forks, wild-type cells accumulate short single-stranded regions, which likely causes checkpoint activation, whereas rad53 mutants exhibit extensive single-stranded gaps and hemi-replicated intermediates, consistent with a lagging-strand synthesis defect. Further, rad53 cells accumulate Holliday junctions through fork reversal. We speculate that, in checkpoint mutants, abnormal replication intermediates begin to form because of uncoordinated replication and are further processed by unscheduled recombination pathways, causing genome instability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATR and ATRIP: partners in checkpoint signaling.

              The checkpoint kinases ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3 related) transduce genomic stress signals to halt cell cycle progression and promote DNA repair. We report the identification of an ATR-interacting protein (ATRIP) that is phosphorylated by ATR, regulates ATR expression, and is an essential component of the DNA damage checkpoint pathway. ATR and ATRIP both localize to intranuclear foci after DNA damage or inhibition of replication. Deletion of ATR mediated by the Cre recombinase caused the loss of ATR and ATRIP expression, loss of DNA damage checkpoint responses, and cell death. Therefore, ATR is essential for the viability of human somatic cells. Small interfering RNA directed against ATRIP caused the loss of both ATRIP and ATR expression and the loss of checkpoint responses to DNA damage. Thus, ATRIP and ATR are mutually dependent partners in cell cycle checkpoint signaling pathways.
                Bookmark

                Author and article information

                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                November 2003
                17 November 2003
                : 1
                : 2
                : e33
                Affiliations
                [1] 1Cold Spring Harbor Laboratory, Cold Spring Harbor New YorkUnited States of America
                Article
                10.1371/journal.pbio.0000033
                261875
                14624239
                2544980b-6582-4301-8076-e6e042248c84
                Copyright: ©2003 Ellison and Stillman. This is an open-access article distributed under the terms of the Public Library of Science Open-Access License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
                History
                : 9 May 2003
                : 23 August 2003
                Categories
                Research Article
                Cell Biology
                Molecular Biology/Structural Biology
                Eukaryotes
                Homo (Human)
                Saccharomyces
                Schizosaccharomymes

                Life sciences
                Life sciences

                Comments

                Comment on this article