109
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mucosal Damage and Neutropenia Are Required for Candida albicans Dissemination

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Candida albicans fungemia in cancer patients is thought to develop from initial gastrointestinal (GI) colonization with subsequent translocation into the bloodstream after administration of chemotherapy. It is unclear what components of the innate immune system are necessary for preventing C. albicans dissemination from the GI tract, but we have hypothesized that both neutropenia and GI mucosal damage are critical for allowing widespread invasive C. albicans disease. We investigated these parameters in a mouse model of C. albicans GI colonization that led to systemic spread after administration of immunosuppression and mucosal damage. After depleting resident GI intestinal flora with antibiotic treatment and achieving stable GI colonization levels of C. albicans, it was determined that systemic chemotherapy with cyclophosphamide led to 100% mortality, whereas selective neutrophil depletion, macrophage depletion, lymphopenia or GI mucosal disruption alone resulted in no mortality. Selective neutrophil depletion combined with GI mucosal disruption led to disseminated fungal infection and 100% mortality ensued. GI translocation and dissemination by C. albicans was also dependent on the organism's ability to transform from the yeast to the hyphal form. This mouse model of GI colonization and fungemia is useful for studying factors of innate host immunity needed to prevent invasive C. albicans disease as well as identifying virulence factors that are necessary for fungal GI colonization and dissemination. The model may also prove valuable for evaluating therapies to control C. albicans infections.

          Author Summary

          Candida albicans is a fungus that lives harmlessly in the gastrointestinal (GI) tracts of humans. In cancer patients and patients undergoing bone marrow transplantation, however, the anti-cancer drugs that are administered to these patients also cause the undesired effect of suppressing the human immune system. The treatments allow C. albicans to spread into the blood and other organs and cause a severe disease. We found we could colonize the GI tracts of mice with C. albicans and then suppress the immune system with anti-cancer drugs to determine which components of the innate immune system (neutrophils, lymphocytes, macrophages, or GI tract integrity) are critical for preventing C. albicans from speading from the GI tract. We found that lowering the neutrophil counts and damaging the GI tract were both needed to cause systemic infection with C. albicans. We also found that the ability of C. albicans to switch from the yeast (spherical) form to the filamentous form is also important for establishing invasive disease. Our study provides new insights into the process of how a typically harmless microorganism inhabiting the GI tract can cause severe invasive disease once critical components of the host immune system are compromised.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Clinicopathologic study of dextran sulfate sodium experimental murine colitis.

          We undertook this study in order to fully characterize the clinical and histopathology features of the dextran sulfate sodium (DSS) model of experimental murine colitis and to discover the earliest histopathologic changes that lead to colitis. Acute colitis was induced in Swiss-Webster mice by 7 days of oral DSS with animals sacrificed daily. Chronic colitis was induced by: (a) 7 days of oral DSS followed by 7 days of H2O (for 1, 2, and 3 cycles) and (b) 7 days of oral DSS followed by 14 and 21 days of H2O. In each experimental group, the entire colons were examined histologically and correlated with clinical symptoms. Acute clinical symptoms (diarrhea and/or grossly bloody stool) were associated with the presence of erosions and inflammation. More importantly, the earliest histologic changes which predated clinical colitis was loss of the basal one-third of the crypt (day 3), which progressed with time to loss of the entire crypt resulting in erosions on day 5. The earliest changes were very focal and not associated with inflammation. Inflammation was a secondary phenomena and only became significant after erosions appeared. Animals treated with only 7 days of DSS followed by 14 and 21 days of H2O developed a chronic colitis with the following histologic features: areas of activity (erosions and inflammation), inactivity, crypt distortion, florid epithelial proliferation and possible dysplasia. These changes were similar to animals given 3 cycles of DSS. The clinical disease activity index correlated significantly with pathologic changes in both the acute and chronic phases of the disease. The mechanism of DSS colitis is presently unknown. However, the finding of crypt loss without proceeding or accompanying inflammation suggests that the initial insult is at the level of the epithelial cell with inflammation being a secondary phenomena. This may be a good model to study how early mucosal changes lead to inflammation and the biology of the colonic enterocyte. Chronic colitis induced after only 7 days of DSS may serve as a useful model to study the effects of pharmacologic agents in human inflammatory disease and mechanisms of perpetuation of inflammation. Finally, we believe that this model has the potential to study the dysplasia cancer sequence in inflammatory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nonfilamentous C. albicans mutants are avirulent.

            Candida albicans and Saccharomyces cerevisiae switch from a yeast to a filamentous form. In Saccharomyces, this switch is controlled by two regulatory proteins, Ste12p and Phd1p. Single-mutant strains, ste12/ste12 or phd1/phd1, are partially defective, whereas the ste12/ste12 phd1/phd1 double mutant is completely defective in filamentous growth and is noninvasive. The equivalent cph1/cph1 efg1/efg1 double mutant in Candida (Cph1p is the Ste12p homolog and Efg1p is the Phd1p homolog) is also defective in filamentous growth, unable to form hyphae or pseudohyphae in response to many stimuli, including serum or macrophages. This Candida cph1/cph1 efg1/efg1 double mutant, locked in the yeast form, is avirulent in a mouse model.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isogenic strain construction and gene mapping in Candida albicans.

              Genetic manipulation of Candida albicans is constrained by its diploid genome and asexual life cycle. Recessive mutations are not expressed when heterozygous and undesired mutations introduced in the course of random mutagenesis cannot be removed by genetic back-crossing. To circumvent these problems, we developed a genotypic screen that permitted identification of a heterozygous recessive mutation at the URA3 locus. The mutation was introduced by targeted mutagenesis, homologous integration of transforming DNA, to avoid introduction of extraneous mutations. The ura3 mutation was rendered homozygous by a second round of transformation resulting in a Ura- strain otherwise isogenic with the parental clinical isolate. Subsequent mutation of the Ura- strain was achieved by targeted mutagenesis using the URA3 gene as a selectable marker. URA3 selection was used repeatedly for the sequential introduction of mutations by flanking the URA3 gene with direct repeats of the Salmonella typhimurium hisG gene. Spontaneous intrachromosomal recombination between the flanking repeats excised the URA3 gene restoring a Ura- phenotype. These Ura- segregants were selected on 5-fluoroorotic acid-containing medium and used in the next round of mutagenesis. To permit the physical mapping of disrupted genes, the 18-bp recognition sequence of the endonuclease I-SceI was incorporated into the hisG repeats. Site-specific cleavage of the chromosome with I-SceI revealed the position of the integrated sequences.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                plpa
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2008
                15 February 2008
                : 4
                : 2
                : e35
                Affiliations
                [1 ] Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
                [2 ] Department of Medicine, Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
                [3 ] Department of Medicine, Infectious Diseases, Children's Hospital, Boston, Massachusetts, United States of America
                [4 ] Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
                [5 ] Department of Cell Biology and Immunology, Free University, Amsterdam, The Netherlands
                University of California Los Angeles, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: Andrew_koh@ 123456dfci.harvard.edu
                Article
                07-PLPA-RA-0460R2 plpa-04-02-24
                10.1371/journal.ppat.0040035
                2242836
                18282097
                9908d34f-bc5b-4aa1-bb5e-797dfcc3803e
                Copyright: © 2008 Koh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 July 2007
                : 7 January 2008
                Page count
                Pages: 10
                Categories
                Research Article
                Immunology
                Infectious Diseases
                Oncology
                Yeast and Fungi
                Mus (Mouse)
                Homo (Human)
                Custom metadata
                Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4(2): e35. doi: 10.1371/journal.ppat.0040035

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article