26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multifactor Dimensionality Reduction as a Filter-Based Approach for Genome Wide Association Studies

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in genotyping technology and the multitude of genetic data available now provide a vast amount of data that is proving to be useful in the quest for a better understanding of human genetic diseases through the study of genetic variation. This has led to the development of approaches such as genome wide association studies (GWAS) designed specifically for interrogating variants across the genome for association with disease, typically by testing single locus, univariate associations. More recently it has been accepted that epistatic (interaction) effects may also be great contributors to these genetic effects, and GWAS methods are now being applied to find epistatic effects. The challenge for these methods still remain in prioritization and interpretation of results, as it has also become standard for initial findings to be independently investigated in replication cohorts or functional studies. This is motivating the development and implementation of filter-based approaches to prioritize variants found to be significant in a discovery stage for follow-up for replication. Such filters must be able to detect both univariate and interactive effects. In the current study we present and evaluate the use of multifactor dimensionality reduction (MDR) as such a filter, with simulated data and a wide range of effect sizes. Additionally, we compare the performance of the MDR filter to a similar filter approach using logistic regression (LR), the more traditional approach used in GWAS analysis, as well as evaporative cooling (EC)-another prominent machine learning filtering method. The results of our simulation study show that MDR is an effective method for such prioritization, and that it can detect main effects, and interactions with or without marginal effects. Importantly, it performed as well as EC and LR for main effect models. It also significantly outperforms LR for various two-locus epistatic models, while it has equivalent results as EC for the epistatic models. The results of this study demonstrate the potential of MDR as a filter to detect gene–gene interactions in GWAS studies.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer.

          We conducted a genome-wide association study (GWAS) of breast cancer by genotyping 528,173 SNPs in 1,145 postmenopausal women of European ancestry with invasive breast cancer and 1,142 controls. We identified four SNPs in intron 2 of FGFR2 (which encodes a receptor tyrosine kinase and is amplified or overexpressed in some breast cancers) that were highly associated with breast cancer and confirmed this association in 1,776 affected individuals and 2,072 controls from three additional studies. Across the four studies, the association with all four SNPs was highly statistically significant (P(trend) for the most strongly associated SNP (rs1219648) = 1.1 x 10(-10); population attributable risk = 16%). Four SNPs at other loci most strongly associated with breast cancer in the initial GWAS were not associated in the replication studies. Our summary results from the GWAS are available online in a form that should speed the identification of additional risk loci.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide strategies for detecting multiple loci that influence complex diseases.

            After nearly 10 years of intense academic and commercial research effort, large genome-wide association studies for common complex diseases are now imminent. Although these conditions involve a complex relationship between genotype and phenotype, including interactions between unlinked loci, the prevailing strategies for analysis of such studies focus on the locus-by-locus paradigm. Here we consider analytical methods that explicitly look for statistical interactions between loci. We show first that they are computationally feasible, even for studies of hundreds of thousands of loci, and second that even with a conservative correction for multiple testing, they can be more powerful than traditional analyses under a range of models for interlocus interactions. We also show that plausible variations across populations in allele frequencies among interacting loci can markedly affect the power to detect their marginal effects, which may account in part for the well-known difficulties in replicating association results. These results suggest that searching for interactions among genetic loci can be fruitfully incorporated into analysis strategies for genome-wide association studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study.

              Rheumatoid arthritis has a complex mode of inheritance. Although HLA-DRB1 and PTPN22 are well-established susceptibility loci, other genes that confer a modest level of risk have been identified recently. We carried out a genomewide association analysis to identify additional genetic loci associated with an increased risk of rheumatoid arthritis. We genotyped 317,503 single-nucleotide polymorphisms (SNPs) in a combined case-control study of 1522 case subjects with rheumatoid arthritis and 1850 matched control subjects. The patients were seropositive for autoantibodies against cyclic citrullinated peptide (CCP). We obtained samples from two data sets, the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA). Results from NARAC and EIRA for 297,086 SNPs that passed quality-control filters were combined with the use of Cochran-Mantel-Haenszel stratified analysis. SNPs showing a significant association with disease (P<1x10(-8)) were genotyped in an independent set of case subjects with anti-CCP-positive rheumatoid arthritis (485 from NARAC and 512 from EIRA) and in control subjects (1282 from NARAC and 495 from EIRA). We observed associations between disease and variants in the major-histocompatibility-complex locus, in PTPN22, and in a SNP (rs3761847) on chromosome 9 for all samples tested, the latter with an odds ratio of 1.32 (95% confidence interval, 1.23 to 1.42; P=4x10(-14)). The SNP is in linkage disequilibrium with two genes relevant to chronic inflammation: TRAF1 (encoding tumor necrosis factor receptor-associated factor 1) and C5 (encoding complement component 5). A common genetic variant at the TRAF1-C5 locus on chromosome 9 is associated with an increased risk of anti-CCP-positive rheumatoid arthritis. Copyright 2007 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front. Gene.
                Frontiers in Genetics
                Frontiers Research Foundation
                1664-8021
                21 November 2011
                2011
                : 2
                : 80
                Affiliations
                [1] 1simpleBioinformatics Research Center, North Carolina State University Raleigh, NC, USA
                [2] 2simpleDepartment of Statistics, North Carolina State University Raleigh, NC, USA
                Author notes

                Edited by: Brett McKinney, University of Tulsa, USA

                Reviewed by: Yu Zhang, Penn State University, USA; Nicholas Pajewski, Wake Forest University, USA; Benjamin Grady, Vanderbilt University, USA

                *Correspondence: Alison A. Motsinger-Reif, Department of Statistics, Bioinformatics Research Center, North Carolina State University, 840 Main Campus Drive, CB 7566, Raleigh, NC 27695-7566, USA. e-mail: motsinger@ 123456stat.ncsu.edu

                This article was submitted to Frontiers in Statistical Genetics and Methodology, a specialty of Frontiers in Genetics.

                Article
                10.3389/fgene.2011.00080
                3268633
                22303374
                393342f9-f009-4aaf-9c64-a7eb564c5e5f
                Copyright © 2011 Oki and Motsinger-Reif.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 26 June 2011
                : 26 October 2011
                Page count
                Figures: 11, Tables: 7, Equations: 3, References: 60, Pages: 17, Words: 12961
                Categories
                Genetics
                Original Research

                Genetics
                gwas,epistasis,multifactor dimensionality reduction
                Genetics
                gwas, epistasis, multifactor dimensionality reduction

                Comments

                Comment on this article