8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lanthanide organic–inorganic hybrids based on functionalized metal–organic frameworks (MOFs) for a near-UV white LED

      ,
      Chem. Commun.
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel near-UV white LED based on lanthanide organic–inorganic hybrid material is realized through postsynthetically modified MOFs and MOF-based polymers. The hybrids materials have high quantum yield and satisfactory luminescence stability; the assembled white LED has tuneable correlated color temperature and high color rendering index.

          Abstract

          A novel near-UV white LED based on lanthanide organic–inorganic hybrid material is realized through postsynthetically modified MOFs and MOF-based polymers. The hybrids materials have high quantum yield and satisfactory luminescence stability; the assembled white LED has tuneable correlated color temperature and high color rendering index.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          Lanthanide-based luminescent hybrid materials.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent multifunctional lanthanides-based metal-organic frameworks.

            Metal-organic frameworks based on trivalent lanthanides (LnMOFs) are a very promising class of materials for addressing the challenges in engineering of luminescent centres. Lanthanide-bearing phosphors find numerous applications in lighting, optical communications, photonics and biomedical devices. In this critical review we discuss the potential of LnMOFs as multifunctional systems, which combine light emission with properties such as microporosity, magnetism, chirality, molecule and ion sensing, catalysis and activity as multimodal imaging contrast agents. We argue that these materials present a unique chance of observing synergy between several of these properties, such as the coupling between photoluminescence and magnetism. Moreover, an integrated approach towards the design of efficient, stable, cheap, environmentally-friendly and multifunctional luminescent LnMOFs is still missing. Although research into LnMOFs is at its early stage and much basic knowledge is still needed, the field is ripe for new ideas, which will enable sensor devices and photonic prototypes to become a commercial reality (81 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lanthanide-containing light-emitting organic-inorganic hybrids: a bet on the future.

              Interest in lanthanide-containing organic-inorganic hybrids has grown considerably during the last decade, with the concomitant fabrication of materials with tunable attributes offering modulated properties. The potential of these materials relies on exploiting the synergy between the intrinsic characteristics of sol-gel derived hosts (highly controlled purity, versatile shaping and patterning, excellent optical quality, easy control of the refractive index, photosensitivity, encapsulation of large amounts of isolated emitting centers protected by the host) and the luminescence features of trivalent lanthanide ions (high luminescence quantum yield, narrow bandwidth, long-lived emission, large Stokes shifts, ligand-dependent luminescence sensitization). Promising applications may be envisaged, such as light-emitting devices, active waveguides in the visible and near-IR spectral regions, active coatings, and bio-medical actuators and sensors, opening up exciting directions in materials science and related technologies with significant implications in the integration, miniaturization, and multifunctionalization of devices. This review provides an overview of the latest advances in Ln(3+)-containing siloxane-based hybrids, with emphasis on the different possible synthetic strategies, photoluminescence features, empirical determination.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chem. Commun.
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2014
                2014
                : 50
                : 97
                : 15443-15446
                Article
                10.1039/C4CC07852G
                5f63103a-7b0a-42cb-83d0-528cf068bc9a
                © 2014
                History

                Comments

                Comment on this article