15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.

          Related collections

          Most cited references378

          • Record: found
          • Abstract: found
          • Article: not found

          Parkinson's disease.

          Parkinson's disease is a neurological disorder with evolving layers of complexity. It has long been characterised by the classical motor features of parkinsonism associated with Lewy bodies and loss of dopaminergic neurons in the substantia nigra. However, the symptomatology of Parkinson's disease is now recognised as heterogeneous, with clinically significant non-motor features. Similarly, its pathology involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates other than just Lewy bodies. The cause of Parkinson's disease remains unknown, but risk of developing Parkinson's disease is no longer viewed as primarily due to environmental factors. Instead, Parkinson's disease seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of Parkinson's disease is accompanied by clinical challenges, including an inability to make a definitive diagnosis at the earliest stages of the disease and difficulties in the management of symptoms at later stages. Furthermore, there are no treatments that slow the neurodegenerative process. In this Seminar, we review these complexities and challenges of Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

            Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer Disease: An Update on Pathobiology and Treatment Strategies

              Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular amyloid-β deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remain the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease modifying treatment currently exists and numerous phase 3 clinical trials have failed to demonstrate benefit. We review here recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease modifying therapies.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/1579370/overview
                URI : http://loop.frontiersin.org/people/36446/overview
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                21 January 2022
                2021
                : 14
                : 792364
                Affiliations
                The Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University , Tel Aviv, Israel
                Author notes

                Edited by: Florian Plattner, University of Texas Southwestern Medical Center, United States

                Reviewed by: Hailong Hou, Frontera Therapeutics Inc., United States; Gemma Molinaro, University of Texas Southwestern Medical Center, United States

                *Correspondence: Hagit Eldar-Finkelman, heldar@ 123456tauex.tau.ac.il

                This article was submitted to Brain Disease Mechanisms, a section of the journal Frontiers in Molecular Neuroscience

                Article
                10.3389/fnmol.2021.792364
                8813766
                35126052
                2b55651e-8283-40cd-80c1-ac0b988209c1
                Copyright © 2022 Arciniegas Ruiz and Eldar-Finkelman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 October 2021
                : 07 December 2021
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 379, Pages: 25, Words: 25121
                Categories
                Neuroscience
                Review

                Neurosciences
                gsk-3,inhibitors,cns,neurodegeneration,drug development
                Neurosciences
                gsk-3, inhibitors, cns, neurodegeneration, drug development

                Comments

                Comment on this article