284
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Crystal structure of the µ-opioid receptor bound to a morphinan antagonist

      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

          Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene.

            Despite tremendous efforts in the search for safe, efficacious and non-addictive opioids for pain treatment, morphine remains the most valuable painkiller in contemporary medicine. Opioids exert their pharmacological actions through three opioid-receptor classes, mu, delta and kappa, whose genes have been cloned. Genetic approaches are now available to delineate the contribution of each receptor in opioid function in vivo. Here we disrupt the mu-opioid-receptor gene in mice by homologous recombination and find that there are no overt behavioural abnormalities or major compensatory changes within the opioid system in these animals. Investigation of the behavioural effects of morphine reveals that a lack of mu receptors abolishes the analgesic effect of morphine, as well as place-preference activity and physical dependence. We observed no behavioural responses related to delta- or kappa-receptor activation with morphine, although these receptors are present and bind opioid ligands. We conclude that the mu-opioid-receptor gene product is the molecular target of morphine in vivo and that it is a mandatory component of the opioid system for morphine action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function.

              The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.
                Bookmark

                Author and article information

                Journal
                10.1038/nature10954

                Comments

                Comment on this article