3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zwitterions Narrow Distribution of Perovskite Quantum Wells for Blue Light‐Emitting Diodes with Efficiency Exceeding 15%

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While quasi‐two‐dimensional (quasi‐2D) perovskites have emerged as promising semiconductors for light‐emitting diodes (LEDs), the broad‐width distribution of quantum wells hinders their efficient energy transfer and electroluminescence performance in blue emission. In particular, the underlying mechanism is closely related to the crystallization kinetics and has yet to be understood. Here for the first time, the influence of bifunctional zwitterions with different coordination affinity on the crystallization kinetics of quasi‐2D perovskites is systematically investigated. The zwitterions can coordinate with Pb 2+ and also act as co‐spacer organic species in quasi‐2D perovskites, which collectively inhibit the aggregation of colloidal precursors and shorten the distance of quantum wells. Consequently, restricted nucleation of high‐ n phases and promoted growth of low‐ n phases are achieved with moderately coordinated zwitterions, leading to the final film with a more concentrated n distribution and improved energy transfer efficiency. It thus enables high‐efficiency blue LEDs with a recorded external quantum efficiency of 15.6% at 490 nm, and the operation stability has also been prolonged to 55.3 min. These results provide useful directions for tuning the crystallization kinetics of quasi‐2D perovskites, which is expected to lead to high‐performance perovskite LEDs.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent

          Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4-8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively-still well behind the performance of organic LEDs10-12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device-an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bright light-emitting diodes based on organometal halide perovskite.

            Solid-state light-emitting devices based on direct-bandgap semiconductors have, over the past two decades, been utilized as energy-efficient sources of lighting. However, fabrication of these devices typically relies on expensive high-temperature and high-vacuum processes, rendering them uneconomical for use in large-area displays. Here, we report high-brightness light-emitting diodes based on solution-processed organometal halide perovskites. We demonstrate electroluminescence in the near-infrared, green and red by tuning the halide compositions in the perovskite. In our infrared device, a thin 15 nm layer of CH3NH3PbI(3-x)Cl(x) perovskite emitter is sandwiched between larger-bandgap titanium dioxide (TiO2) and poly(9,9'-dioctylfluorene) (F8) layers, effectively confining electrons and holes in the perovskite layer for radiative recombination. We report an infrared radiance of 13.2 W sr(-1) m(-2) at a current density of 363 mA cm(-2), with highest external and internal quantum efficiencies of 0.76% and 3.4%, respectively. In our green light-emitting device with an ITO/PEDOT:PSS/CH3NH3PbBr3/F8/Ca/Ag structure, we achieved a luminance of 364 cd m(-2) at a current density of 123 mA cm(-2), giving external and internal quantum efficiencies of 0.1% and 0.4%, respectively. We show, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities. Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities. This demonstration of effective perovskite electroluminescence offers scope for developing this unique class of materials into efficient and colour-tunable light emitters for low-cost display, lighting and optical communication applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                January 2023
                December 14 2022
                January 2023
                : 35
                : 3
                Affiliations
                [1 ] Beijing National Laboratory for Molecular Sciences State Key Laboratory of Rare Earth Materials Chemistry and Applications PKU‐HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials Key Laboratory of Polymer Chemistry and Physics of Ministry of Education School of Materials Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
                [2 ] CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing 100190 P. R. China
                [3 ] College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
                Article
                10.1002/adma.202208078
                a9bfe920-ad4a-4961-b4e1-51bb0cacb745
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article