2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic aging in older people living with HIV in Eswatini: a pilot study of HIV and lifestyle factors and epigenetic aging

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: People living with HIV (PLHIV) on effective antiretroviral therapy (ART) are living near-normal lives. Although they are less susceptible to AIDS-related complications, they remain highly vulnerable to non-communicable diseases (NCD). In this exploratory study of older PLHIV (OPLHIV) in Eswatini, we investigated whether biological aging ( i.e. , the difference between epigenetic age and chronological age, termed ‘epigenetic age acceleration [EAA]’) was associated with HIV-related parameters, and whether lifestyle factors modified these relationships. We calculated EAA focusing on the second-generation epigenetic clocks, PhenoAge and GrimAge, and a pace of aging biomarker (DunedinPACE) among 44 OPLHIV in Eswatini. Results: Among participants, the PhenoAge clock showed older epigenetic age (68 years old [63, 77]) but a younger GrimAge epigenetic age (median=56 years old [interquartile range=50, 61]) compared to the chronological age (59 years old [54, 66]). Participants diagnosed with HIV at an older age showed slower DunedinPACE (β-coefficient [95% Confidence Interval]; -0.02 [-0.04, -0.01], p =0.002) and longer duration since HIV diagnosis was associated with faster DunedinPACE (0.02 [0.01, 0.04], p =0.002). The average daily dietary intake of fruits and vegetables was associated with faster DunedinPACE (0.12 [0.03, 0.22], p =0.01) and modified the relationship between HIV status variables (number of years living with HIV since diagnosis, age at HIV diagnosis, CD4 + T cell counts) and PhenoAge EAA, and DunedinPACE. Conclusions: Biological age is accelerated in OPLHIV in Eswatini, with those living with HIV for a longer duration at risk for faster biological aging. Lifestyle factors, especially healthier diets, may attenuate biological aging in OPLHIV. To our knowledge, this is the first study to assess biological aging in Eswatini and one of the few in sub-Saharan Africa.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection.

          A 36-item short-form (SF-36) was constructed to survey health status in the Medical Outcomes Study. The SF-36 was designed for use in clinical practice and research, health policy evaluations, and general population surveys. The SF-36 includes one multi-item scale that assesses eight health concepts: 1) limitations in physical activities because of health problems; 2) limitations in social activities because of physical or emotional problems; 3) limitations in usual role activities because of physical health problems; 4) bodily pain; 5) general mental health (psychological distress and well-being); 6) limitations in usual role activities because of emotional problems; 7) vitality (energy and fatigue); and 8) general health perceptions. The survey was constructed for self-administration by persons 14 years of age and older, and for administration by a trained interviewer in person or by telephone. The history of the development of the SF-36, the origin of specific items, and the logic underlying their selection are summarized. The content and features of the SF-36 are compared with the 20-item Medical Outcomes Study short-form.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA methylation age of human tissues and cell types

            Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays.

              The recently released Infinium HumanMethylation450 array (the '450k' array) provides a high-throughput assay to quantify DNA methylation (DNAm) at ∼450 000 loci across a range of genomic features. Although less comprehensive than high-throughput sequencing-based techniques, this product is more cost-effective and promises to be the most widely used DNAm high-throughput measurement technology over the next several years. Here we describe a suite of computational tools that incorporate state-of-the-art statistical techniques for the analysis of DNAm data. The software is structured to easily adapt to future versions of the technology. We include methods for preprocessing, quality assessment and detection of differentially methylated regions from the kilobase to the megabase scale. We show how our software provides a powerful and flexible development platform for future methods. We also illustrate how our methods empower the technology to make discoveries previously thought to be possible only with sequencing-based methods. http://bioconductor.org/packages/release/bioc/html/minfi.html. khansen@jhsph.edu; rafa@jimmy.harvard.edu Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Res Sq
                ResearchSquare
                Research Square
                American Journal Experts
                05 October 2023
                : rs.3.rs-3389208
                Article
                10.21203/rs.3.rs-3389208
                10.21203/rs.3.rs-3389208/v1
                10602087
                37886587
                9d45c134-b306-4c6c-8cda-05ac907b49df

                This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                Comments

                Comment on this article