2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A lower bound on the right-handed neutrino mass from leptogenesis

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the seesaw model, the baryon asymmetry of the Universe can be generated by the decay of the lightest right-handed neutrino, nu_R. For a hierarchical spectrum of right-handed neutrinos, we show that there is a model independent upper bound on the CP asymmetry produced in these decays: epsilon < 3 m_{nu_3} M_{nu_R}/(8 pi ^2). This implies that epsilon and the mass M_{nu_R} of the lightest right-handed neutrino are not independent parameters, as is commonly assumed. If m_{nu_3} = sqrt{Delta m^2_{atm}} and the nu_R are produced thermally, then leptogenesis requires a reheat temperature of the Universe T_{reh} > M_{nu_R} > 10^8 GeV. Reasonable estimates of nu_R production and the subsequent washout of the asymmetry, as made by Buchmuller and Plumacher, imply M_{nu_R} > 10^9 GeV, and T_{reh} > 10^{10} GeV. Implications for the gravitino problem are also discussed.

          Related collections

          Author and article information

          Journal
          10.1016/S0370-2693(02)01735-5
          hep-ph/0202239

          High energy & Particle physics
          High energy & Particle physics

          Comments

          Comment on this article