5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Arrestin-Dependent and -Independent Internalization of G Protein–Coupled Receptors: Methods, Mechanisms, and Implications on Cell Signaling

      , , ,
      Molecular Pharmacology
      American Society for Pharmacology & Experimental Therapeutics (ASPET)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references173

          • Record: found
          • Abstract: found
          • Article: not found

          Trends in GPCR drug discovery: new agents, targets and indications

          G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, largely due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report the first analysis of all GPCR drugs and agents in clinical trials. This reveals the current trends across molecule types, drug targets and therapeutic indications, including showing that 481 drugs (~34% of all drugs approved by the FDA) act at 107 unique GPCR targets. Approximately 320 agents are currently in clinical trials, of which ~36% target 64 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has grown. The major disease indications for GPCR modulators show a shift towards diabetes, obesity, and Alzheimer’s disease, while other central nervous system disorders remain highly represented. The 227 (57%) non-olfactory GPCRs that are yet to be explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cells respond to mechanical stress by rapid disassembly of caveolae.

            The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynasore, a cell-permeable inhibitor of dynamin.

              Dynamin is essential for clathrin-dependent coated vesicle formation. It is required for membrane budding at a late stage during the transition from a fully formed pit to a pinched-off vesicle. Dynamin may also fulfill other roles during earlier stages of vesicle formation. We have screened about 16,000 small molecules and have identified 1, named here dynasore, that interferes in vitro with the GTPase activity of dynamin1, dynamin2, and Drp1, the mitochondrial dynamin, but not of other small GTPases. Dynasore acts as a potent inhibitor of endocytic pathways known to depend on dynamin by rapidly blocking coated vesicle formation within seconds of dynasore addition. Two types of coated pit intermediates accumulate during dynasore treatment, U-shaped, half formed pits and O-shaped, fully formed pits, captured while pinching off. Thus, dynamin acts at two steps during clathrin coat formation; GTP hydrolysis is probably needed at both steps.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Molecular Pharmacology
                Mol Pharmacol
                American Society for Pharmacology & Experimental Therapeutics (ASPET)
                0026-895X
                1521-0111
                March 15 2021
                April 2021
                April 2021
                January 20 2021
                : 99
                : 4
                : 242-255
                Article
                10.1124/molpharm.120.000192
                7addebbd-4893-498a-9375-d671a2f34303
                © 2021
                History

                Comments

                Comment on this article