Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multilayer multi-configuration time-dependent Hartree method: implementation and applications to a Henon-Heiles Hamiltonian and to pyrazine

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. {\bf 128}, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) Hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH Hamiltonian using a seven layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D Hamiltonian of Raab {\em et. al.} [J. Chem. Phys. {\bf 110}, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 minutes. When pushing the method towards convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6×107 time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5×105 coefficients and requiring a shorter computation time.

          Related collections

          Author and article information

          Journal
          10.1063/1.3535541
          1012.4625

          Mathematical & Computational physics,Physical chemistry
          Mathematical & Computational physics, Physical chemistry

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content100

          Cited by60