5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TMPRSS4 Promotes Cell Proliferation and Inhibits Apoptosis in Pancreatic Ductal Adenocarcinoma by Activating ERK1/2 Signaling Pathway

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transmembrane protease serine 4 (TMPRSS4) is upregulated in various kinds of human cancers, including pancreatic cancer. However, its biological function in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the current study, real-time qPCR, immunohistochemical staining, Western blotting, and database (Cancer Genome Atlas and Gene Expression) analysis revealed remarkable overexpression of TMPRSS4 in PDAC tissue as compared to non-tumor tissue. The TMPRSS4 overexpression was associated with poor prognosis of PDAC patients. Moreover, multivariate analysis revealed that TMPRSS4 serves as an independent risk factor in PDAC. We performed gain-and loss-of-function analysis and found that TMPRSS4 promotes cellular proliferation and inhibits apoptosis of PDAC cells both in vitro and in vivo. Furthermore, we showed that TMPRSS4 might promote cell proliferation and inhibit apoptosis through activating ERK1/2 signaling pathway in pancreatic cancer cells. These findings were validated by using ERK1/2 phosphorylation inhibitor SCH772984 both in vitro and in vivo. Taken together, this study suggests that TMPRSS4 is a proto-oncogene, which promotes initiation and progression of PDAC by controlling cell proliferation and apoptosis. Our findings indicate that TMPRSS4 could be a promising prognostic biomarker and a therapeutic target for the treatment of pancreatic cancer.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Visualizing and interpreting cancer genomics data via the Xena platform

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic cancer.

              Pancreatic cancer is a major cause of cancer-associated mortality, with a dismal overall prognosis that has remained virtually unchanged for many decades. Currently, prevention or early diagnosis at a curable stage is exceedingly difficult; patients rarely exhibit symptoms and tumours do not display sensitive and specific markers to aid detection. Pancreatic cancers also have few prevalent genetic mutations; the most commonly mutated genes are KRAS, CDKN2A (encoding p16), TP53 and SMAD4 - none of which are currently druggable. Indeed, therapeutic options are limited and progress in drug development is impeded because most pancreatic cancers are complex at the genomic, epigenetic and metabolic levels, with multiple activated pathways and crosstalk evident. Furthermore, the multilayered interplay between neoplastic and stromal cells in the tumour microenvironment challenges medical treatment. Fewer than 20% of patients have surgically resectable disease; however, neoadjuvant therapies might shift tumours towards resectability. Although newer drug combinations and multimodal regimens in this setting, as well as the adjuvant setting, appreciably extend survival, ∼80% of patients will relapse after surgery and ultimately die of their disease. Thus, consideration of quality of life and overall survival is important. In this Primer, we summarize the current understanding of the salient pathophysiological, molecular, translational and clinical aspects of this disease. In addition, we present an outline of potential future directions for pancreatic cancer research and patient management.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                18 March 2021
                2021
                : 11
                : 628353
                Affiliations
                [1] 1Department of Hepatobiliary Surgery I, Zhujiang Hospital, Southern Medical University , Guangzhou, China
                [2] 2Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences , Chongqing, China
                Author notes

                Edited by: Laura Pellegrini, Institute of Oncology Research (IOR), Switzerland

                Reviewed by: Tao Li, Hubei University of Medicine, China; Didier Dreau, University of North Carolina at Charlotte, United States; Swati Venkat, Roswell Park Comprehensive Cancer Center, United States

                *Correspondence: Huaizhi Wang whuaizhi@ 123456gmail.com

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                †These authors have contributed equally to this work

                Article
                10.3389/fonc.2021.628353
                8012900
                9c40fe6d-561a-40d2-8cf2-f2a4a92f6ea7
                Copyright © 2021 Gu, Huang, Zhang, Wang, Tao, Yang, Zheng, Liu, Yang, Zhu, Wang and Fan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 November 2020
                : 23 February 2021
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 40, Pages: 13, Words: 6754
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                tmprss4,proliferation,apoptosis,erk1/2,pancreatic ductal adenocarcinoma
                Oncology & Radiotherapy
                tmprss4, proliferation, apoptosis, erk1/2, pancreatic ductal adenocarcinoma

                Comments

                Comment on this article