34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Magnesium and Human Health: Perspectives and Research Directions

      International Journal of Endocrinology
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Magnesium is the fourth most abundant cation in the body. It has several functions in the human body including its role as a cofactor for more than 300 enzymatic reactions. Several studies have shown that hypomagnesemia is a common electrolyte derangement in clinical setting especially in patients admitted to intensive care unit where it has been found to be associated with increase mortality and hospital stay. Hypomagnesemia can be caused by a wide range of inherited and acquired diseases. It can also be a side effect of several medications. Many studies have reported that reduced levels of magnesium are associated with a wide range of chronic diseases. Magnesium can play important therapeutic and preventive role in several conditions such as diabetes, osteoporosis, bronchial asthma, preeclampsia, migraine, and cardiovascular diseases. This review is aimed at comprehensively collating the current available published evidence and clinical correlates of magnesium disorders.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions

              Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.
                Bookmark

                Author and article information

                Journal
                10.1155/2018/9041694
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article