18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Two Faces of Reactive Oxygen Species in Cancer

      1 , 2 , 1 , 2
      Annual Review of Cancer Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis

            The p53 tumor-suppressor protein prevents cancer development through various mechanisms, including the induction of cell-cycle arrest, apoptosis, and the maintenance of genome stability. We have identified a p53-inducible gene named TIGAR (TP53-induced glycolysis and apoptosis regulator). TIGAR expression lowered fructose-2,6-bisphosphate levels in cells, resulting in an inhibition of glycolysis and an overall decrease in intracellular reactive oxygen species (ROS) levels. These functions of TIGAR correlated with an ability to protect cells from ROS-associated apoptosis, and consequently, knockdown of endogenous TIGAR expression sensitized cells to p53-induced death. Expression of TIGAR may therefore modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired. The decrease of intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The first 30 years of p53: growing ever more complex.

              Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus. The first decade of p53 research saw the cloning of p53 DNA and the realization that p53 is not an oncogene but a tumour suppressor that is very frequently mutated in human cancer. In the second decade of research, the function of p53 was uncovered: it is a transcription factor induced by stress, which can promote cell cycle arrest, apoptosis and senescence. In the third decade after its discovery new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation. The fourth decade of research may see new p53-based drugs to treat cancer. What is next is anybody's guess.
                Bookmark

                Author and article information

                Journal
                Annual Review of Cancer Biology
                Annu. Rev. Cancer Biol.
                Annual Reviews
                2472-3428
                March 06 2017
                March 06 2017
                : 1
                : 1
                : 79-98
                Affiliations
                [1 ]Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611;
                [2 ]Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
                Article
                10.1146/annurev-cancerbio-041916-065808
                8a86e9a4-af56-431e-a6f6-51eaceadb711
                © 2017
                History

                Comments

                Comment on this article