5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting the Temperature-Driven Development of Stage-Structured Insect Populations with a Bayesian Hierarchical Model

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The management of forest pests relies on an accurate understanding of the species’ phenology. Thermal performance curves (TPCs) have traditionally been used to model insect phenology. Many such models have been proposed and fitted to data from both wild and laboratory-reared populations. Using Hamiltonian Monte Carlo for estimation, we implement and fit an individual-level, Bayesian hierarchical model of insect development to the observed larval stage durations of a population reared in a laboratory at constant temperatures. This hierarchical model handles interval censoring and temperature transfers between two constant temperatures during rearing. It also incorporates individual variation, quadratic variation in development rates across insects’ larval stages, and “flexibility” parameters that allow for deviations from a parametric TPC. Using a Bayesian method ensures a proper propagation of parameter uncertainty into predictions and provides insights into the model at hand. The model is applied to a population of eastern spruce budworm ( Choristoneura fumiferana) reared at 7 constant temperatures. Resulting posterior distributions can be incorporated into a workflow that provides prediction intervals for the timing of life stages under different temperature regimes. We provide a basic example for the spruce budworm using a year of hourly temperature data from Timmins, Ontario, Canada. Supplementary materials accompanying this paper appear on-line.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Intraspecific Variation in Body Size and Fecundity in Insects: A General Relationship

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Thermal biology of mosquito‐borne disease

            Abstract Mosquito‐borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait‐based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species – including globally important diseases like malaria, dengue, and Zika – synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23–29ºC and declining to zero below 9–23ºC and above 32–38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25–26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rank-Normalization, Folding, and Localization: An Improved $\widehat{R}$ for Assessing Convergence of MCMC

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Agricultural, Biological and Environmental Statistics
                JABES
                Springer Science and Business Media LLC
                1085-7117
                1537-2693
                November 16 2023
                Article
                10.1007/s13253-023-00581-y
                dc90820e-186d-4816-a1e2-87dcfc218de1
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article