15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Satellite‐Based Monitoring of Irrigation Water Use: Assessing Measurement Errors and Their Implications for Agricultural Water Management Policy

      1 , 2 , 2 , 3
      Water Resources Research
      American Geophysical Union (AGU)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes

          The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to ‘smart’ interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05° climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05° CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An Overview of the Global Historical Climatology Network-Daily Database

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deficit irrigation for reducing agricultural water use.

              At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas.
                Bookmark

                Author and article information

                Contributors
                Journal
                Water Resources Research
                Water Resour. Res.
                American Geophysical Union (AGU)
                0043-1397
                1944-7973
                November 2020
                November 05 2020
                November 2020
                : 56
                : 11
                Affiliations
                [1 ]Department of Mechanical, Aerospace and Civil Engineering University of Manchester Manchester UK
                [2 ]Department of Agricultural Economics University of Nebraska‐Lincoln Lincoln NE USA
                [3 ]Robert B. Daugherty Water for Food Global Institute University of Nebraska‐Lincoln Lincoln NE USA
                Article
                10.1029/2020WR028378
                6852b4e0-07da-4c4f-9698-aedbb3726b80
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article