4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Safety and effectiveness of mechanical thrombectomy for primary isolated distal vessel occlusions: A monocentric retrospective comparative study

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A randomized trial of intraarterial treatment for acute ischemic stroke.

          In patients with acute ischemic stroke caused by a proximal intracranial arterial occlusion, intraarterial treatment is highly effective for emergency revascularization. However, proof of a beneficial effect on functional outcome is lacking. We randomly assigned eligible patients to either intraarterial treatment plus usual care or usual care alone. Eligible patients had a proximal arterial occlusion in the anterior cerebral circulation that was confirmed on vessel imaging and that could be treated intraarterially within 6 hours after symptom onset. The primary outcome was the modified Rankin scale score at 90 days; this categorical scale measures functional outcome, with scores ranging from 0 (no symptoms) to 6 (death). The treatment effect was estimated with ordinal logistic regression as a common odds ratio, adjusted for prespecified prognostic factors. The adjusted common odds ratio measured the likelihood that intraarterial treatment would lead to lower modified Rankin scores, as compared with usual care alone (shift analysis). We enrolled 500 patients at 16 medical centers in The Netherlands (233 assigned to intraarterial treatment and 267 to usual care alone). The mean age was 65 years (range, 23 to 96), and 445 patients (89.0%) were treated with intravenous alteplase before randomization. Retrievable stents were used in 190 of the 233 patients (81.5%) assigned to intraarterial treatment. The adjusted common odds ratio was 1.67 (95% confidence interval [CI], 1.21 to 2.30). There was an absolute difference of 13.5 percentage points (95% CI, 5.9 to 21.2) in the rate of functional independence (modified Rankin score, 0 to 2) in favor of the intervention (32.6% vs. 19.1%). There were no significant differences in mortality or the occurrence of symptomatic intracerebral hemorrhage. In patients with acute ischemic stroke caused by a proximal intracranial occlusion of the anterior circulation, intraarterial treatment administered within 6 hours after stroke onset was effective and safe. (Funded by the Dutch Heart Foundation and others; MR CLEAN Netherlands Trial Registry number, NTR1804, and Current Controlled Trials number, ISRCTN10888758.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection

            New England Journal of Medicine, 372(11), 1009-1018
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke.

              Intravenous thrombolysis with alteplase is the only approved treatment for acute ischemic stroke, but its efficacy and safety when administered more than 3 hours after the onset of symptoms have not been established. We tested the efficacy and safety of alteplase administered between 3 and 4.5 hours after the onset of a stroke. After exclusion of patients with a brain hemorrhage or major infarction, as detected on a computed tomographic scan, we randomly assigned patients with acute ischemic stroke in a 1:1 double-blind fashion to receive treatment with intravenous alteplase (0.9 mg per kilogram of body weight) or placebo. The primary end point was disability at 90 days, dichotomized as a favorable outcome (a score of 0 or 1 on the modified Rankin scale, which has a range of 0 to 6, with 0 indicating no symptoms at all and 6 indicating death) or an unfavorable outcome (a score of 2 to 6 on the modified Rankin scale). The secondary end point was a global outcome analysis of four neurologic and disability scores combined. Safety end points included death, symptomatic intracranial hemorrhage, and other serious adverse events. We enrolled a total of 821 patients in the study and randomly assigned 418 to the alteplase group and 403 to the placebo group. The median time for the administration of alteplase was 3 hours 59 minutes. More patients had a favorable outcome with alteplase than with placebo (52.4% vs. 45.2%; odds ratio, 1.34; 95% confidence interval [CI], 1.02 to 1.76; P=0.04). In the global analysis, the outcome was also improved with alteplase as compared with placebo (odds ratio, 1.28; 95% CI, 1.00 to 1.65; P<0.05). The incidence of intracranial hemorrhage was higher with alteplase than with placebo (for any intracranial hemorrhage, 27.0% vs. 17.6%; P=0.001; for symptomatic intracranial hemorrhage, 2.4% vs. 0.2%; P=0.008). Mortality did not differ significantly between the alteplase and placebo groups (7.7% and 8.4%, respectively; P=0.68). There was no significant difference in the rate of other serious adverse events. As compared with placebo, intravenous alteplase administered between 3 and 4.5 hours after the onset of symptoms significantly improved clinical outcomes in patients with acute ischemic stroke; alteplase was more frequently associated with symptomatic intracranial hemorrhage. (ClinicalTrials.gov number, NCT00153036.) 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Neuroradiology
                Journal of Neuroradiology
                Elsevier BV
                01509861
                June 2022
                June 2022
                : 49
                : 4
                : 311-316
                Article
                10.1016/j.neurad.2022.03.008
                e6045976-855e-4239-97de-133d9cd8b776
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article