14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracts of six Rubiaceae species combined with rifampicin have good in vitro synergistic antimycobacterial activity and good anti-inflammatory and antioxidant activities

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Rubiaceae family has played a significant role in drug discovery by providing molecules with potential use as templates for the development of therapeutic drugs. This study was designed to study the in vitro synergistic effect of six Rubiaceae species in combination with a known anti-TB drug. The antioxidant and anti-inflammatory activity of these species were also evaluated to investigate additional benefits in antimycobacterial treatment.

          Methods

          The checkerboard method was used to determine the antimycobacterial synergistic activity of plant extracts combined with rifampicin. The antioxidant activity of extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Anti-inflammatory activity via inhibition of nitric oxide (NO) production was performed in LPS-activated RAW 264.7 macrophages using the Griess assay.

          Results

          Combination of rifampicin with the crude extracts resulted in a 4 to 256-fold increase of activity of extracts. The crude extract of Cremaspora triflora produced the best synergistic effect with rifampicin, with a fractional inhibitory concentration (FIC) index of 0.08 against Mycobacterium aurum. Extracts of Psychotria zombamontana had the best antioxidant activity with an IC 50 value of 1.77 μg/mL, lower than the IC 50 of trolox and ascorbic acid (5.67 μg/mL and 4.66 μg/mL respectively). All the extracts tested inhibited nitric oxide (NO) production in a concentration dependent manner with the percentage of inhibition varying from 6.73 to 86.27 %.

          Conclusion

          Some of the Rubiaceae species investigated have substantial in vitro synergistic effects with rifampicin and also good free radical scavenging ability and anti-inflammatory activity. These preliminary results warrant further study on these plants to determine if compounds isolated from these species could lead to the development of bioactive compounds that can potentiate the activity of rifampicin even against resistant mycobacteria.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in understanding the antibacterial properties of flavonoids.

            Antibiotic resistance is a major global problem and there is a pressing need to develop new therapeutic agents. Flavonoids are a family of plant-derived compounds with potentially exploitable activities, including direct antibacterial activity, synergism with antibiotics, and suppression of bacterial virulence. In this review, recent advances towards understanding these properties are described. Information is presented on the ten most potently antibacterial flavonoids as well as the five most synergistic flavonoid-antibiotic combinations tested in the last 6 years (identified from PubMed and ScienceDirect). Top of these respective lists are panduratin A, with minimum inhibitory concentrations (MICs) of 0.06-2.0 μg/mL against Staphylococcus aureus, and epicatechin gallate, which reduces oxacillin MICs as much as 512-fold. Research seeking to improve such activity and understand structure-activity relationships is discussed. Proposed mechanisms of action are also discussed. In addition to direct and synergistic activities, flavonoids inhibit a number of bacterial virulence factors, including quorum-sensing signal receptors, enzymes and toxins. Evidence of these molecular effects at the cellular level include in vitro inhibition of biofilm formation, inhibition of bacterial attachment to host ligands, and neutralisation of toxicity towards cultured human cells. In vivo evidence of disruption of bacterial pathogenesis includes demonstrated efficacy against Helicobacter pylori infection and S. aureus α-toxin intoxication. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of nitric oxide synthesis in macrophage antimicrobial activity.

              Research over the past 5 years has demonstrated that immunologic activation of mouse macrophages induces the activity of nitric oxide synthase, which oxidizes a guanidino nitrogen of L-arginine, yielding citrulline and the reactive radical, nitric oxide. A review of the biochemistry and immunologic regulation of this pathway in macrophages provides a backdrop against which to evaluate its effector functions. Reports published in the past 2 years suggest that synthesis of NO mediates much of the antimicrobial activity of mouse macrophages against some fungal, helminthic, protozoal and bacterial pathogens.
                Bookmark

                Author and article information

                Contributors
                aroabimbola@yahoo.co.uk
                +237 676091031 , jpdzoyem@yahoo.fr
                kobus.eloff@up.ac.za
                lyndy.mcgaw@up.ac.za
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                3 October 2016
                3 October 2016
                2016
                : 16
                : 385
                Affiliations
                [1 ]Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa
                [2 ]Present Address: Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
                Article
                1355
                10.1186/s12906-016-1355-y
                5048625
                27716160
                32e41222-2851-4d15-b213-e31c0a19d732
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 December 2015
                : 9 September 2016
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Complementary & Alternative medicine
                synergy,antimycobacterial,antioxidant,nitric oxide,rubiaceae,tuberculosis

                Comments

                Comment on this article