12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: assessment with whole-brain magnetic resonance spectroscopy.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous neuroimaging studies have detected markers of neuroinflammation in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Magnetic Resonance Spectroscopy (MRS) is suitable for measuring brain metabolites linked to inflammation, but has only been applied to discrete regions of interest in ME/CFS. We extended the MRS analysis of ME/CFS by capturing multi-voxel information across the entire brain. Additionally, we tested whether MRS-derived brain temperature is elevated in ME/CFS patients. Fifteen women with ME/CFS and 15 age- and gender-matched healthy controls completed fatigue and mood symptom questionnaires and whole-brain echo-planar spectroscopic imaging (EPSI). Choline (CHO), myo-inositol (MI), lactate (LAC), and N-acetylaspartate (NAA) were quantified in 47 regions, expressed as ratios over creatine (CR), and compared between ME/CFS patients and controls using independent-samples t-tests. Brain temperature was similarly tested between groups. Significant between-group differences were detected in several regions, most notably elevated CHO/CR in the left anterior cingulate (p < 0.001). Metabolite ratios in seven regions were correlated with fatigue (p < 0.05). ME/CFS patients had increased temperature in the right insula, putamen, frontal cortex, thalamus, and the cerebellum (all p < 0.05), which was not attributable to increased body temperature or differences in cerebral perfusion. Brain temperature increases converged with elevated LAC/CR in the right insula, right thalamus, and cerebellum (all p < 0.05). We report metabolite and temperature abnormalities in ME/CFS patients in widely distributed regions. Our findings may indicate that ME/CFS involves neuroinflammation.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Brain lactate metabolism: the discoveries and the controversies.

          Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an 'opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune-neural connections: how the immune system's response to infectious agents influences behavior.

            Humans and animals use the classical five senses of sight, sound, touch, smell and taste to monitor their environment. The very survival of feral animals depends on these sensory perception systems, which is a central theme in scholarly research on comparative aspects of anatomy and physiology. But how do all of us sense and respond to an infection? We cannot see, hear, feel, smell or taste bacterial and viral pathogens, but humans and animals alike are fully aware of symptoms of sickness that are caused by these microbes. Pain, fatigue, altered sleep pattern, anorexia and fever are common symptoms in both sick animals and humans. Many of these physiological changes represent adaptive responses that are considered to promote animal survival, and this constellation of events results in sickness behavior. Infectious agents display a variety of pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs). These PRR are expressed on both the surface [e.g. Toll-like receptor (TLR)-4] and in the cytoplasm [e.g. nucleotide-binding oligomerization domain (Nod)-like receptors] of cells of the innate immune system, primarily macrophages and dendritic cells. These cells initiate and propagate an inflammatory response by stimulating the synthesis and release of a variety of cytokines. Once an infection has occurred in the periphery, both cytokines and bacterial toxins deliver this information to the brain using both humoral and neuronal routes of communication. For example, binding of PRR can lead to activation of the afferent vagus nerve, which communicates neuronal signals via the lower brain stem (nucleus tractus solitarius) to higher brain centers such as the hypothalamus and amygdala. Blood-borne cytokines initiate a cytokine response from vascular endothelial cells that form the blood-brain barrier (BBB). Cytokines can also reach the brain directly by leakage through the BBB via circumventricular organs or by being synthesized within the brain, thus forming a mirror image of the cytokine milieu in the periphery. Although all cells within the brain are capable of initiating cytokine secretion, microglia have an early response to incoming neuronal and humoral stimuli. Inhibition of proinflammatory cytokines that are induced following bacterial infection blocks the appearance of sickness behaviors. Collectively, these data are consistent with the notion that the immune system communicates with the brain to regulate behavior in a way that is consistent with animal survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain.

              Proton magnetic resonance spectroscopy ((1)H MRS) has been applied to numerous clinical studies, especially for neurological disorders. This technique can non-invasively evaluate brain metabolites and neurochemicals in selected brain regions and is particularly useful for assessing neuroinflammatory disorders. Neurometabolites assessed with MRS include the neuronal markers N-acetylaspartate (NAA) and glutamate (Glu), as well as the glial marker myo-inositol (MI). Therefore, the concentrations of these metabolites typically correspond to disease severity and often correlate well with clinical variables in the various brain disorders. Neuroinflammation with activated astrocytes and microglia in brain disorders are often associated with elevated MI, and to a lesser extent elevated total creatine (tCr) and choline containing compounds (Cho), which are found in higher concentrations in glia than neurons, while neuronal injury is indicated by lower than normal levels of NAA and Glu. This review summarizes the neurometabolite abnormalities found in MRS studies performed in patients with neuroinflammatory disorders or neuropathic pain, which also may be associated with neuroinflammation. These brain disorders include multiple sclerosis, neuroviral infections (including Human Immunodeficiency virus and Hepatitis C), degenerative brain disorders (including Alzheimer's disease and Parkinson's disease), stimulant abuse (including methamphetamine and cocaine) as well as several chronic pain syndromes.
                Bookmark

                Author and article information

                Journal
                Brain Imaging Behav
                Brain imaging and behavior
                Springer Science and Business Media LLC
                1931-7565
                1931-7557
                Apr 2020
                : 14
                : 2
                Affiliations
                [1 ] Department of Psychology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA.
                [2 ] Department of Radiology, Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
                [3 ] Department of Psychology, The University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, USA. younger@uab.edu.
                Article
                10.1007/s11682-018-0029-4 NIHMS1518146
                10.1007/s11682-018-0029-4
                6612467
                30617782
                53d7b186-8068-4245-8f21-b6bc39ec001a
                History

                Brain temperature,Metabolites,Magnetic resonance spectroscopy,Neuroinflammation,Anterior cingulate,Chronic fatigue syndrome

                Comments

                Comment on this article