31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A human cell atlas of fetal gene expression

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          STAR: ultrafast universal RNA-seq aligner.

          Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive Integration of Single-Cell Data

            Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              HTSeq—a Python framework to work with high-throughput sequencing data

              Motivation: A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. Results: We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data, such as genomic coordinates, sequences, sequencing reads, alignments, gene model information and variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes. Availability and implementation: HTSeq is released as an open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index at https://pypi.python.org/pypi/HTSeq. Contact: sanders@fs.tum.de
                Bookmark

                Author and article information

                Contributors
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                November 12 2020
                November 13 2020
                November 12 2020
                November 13 2020
                : 370
                : 6518
                : eaba7721
                Affiliations
                [1 ]Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
                [2 ]Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
                [3 ]Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
                [4 ]Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.
                [5 ]Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
                [6 ]Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
                [7 ]Illumina Inc., San Diego, CA, USA.
                [8 ]Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.
                [9 ]Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
                [10 ]Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
                [11 ]Howard Hughes Medical Institute, Seattle, WA, USA.
                Article
                10.1126/science.aba7721
                a3e62aee-0ea4-489a-b60d-26c79eb33775
                © 2020

                https://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article