47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A majority of human genes use alternative cleavage and polyadenylation to generate mRNA transcripts that differ in the lengths of their 3′ untranslated regions (UTRs). Here, Lianoglou et al. develop a sequencing method, 3′-seq, to measure 3′ UTR isoform expression across diverse human tissues and isogenic transformation systems. The analyses reveal that during transformation and differentiation, single-UTR genes typically change their mRNA abundance levels, while multi-UTR genes change 3′ UTR isoform ratios to achieve tissue specificity. This study offers surprising new insights into how cell type-specific gene expression is achieved.

          Abstract

          More than half of human genes use alternative cleavage and polyadenylation (ApA) to generate mRNA transcripts that differ in the lengths of their 3′ untranslated regions (UTRs), thus altering the post-transcriptional fate of the message and likely the protein output. The extent of 3′ UTR variation across tissues and the functional role of ApA remain poorly understood. We developed a sequencing method called 3′-seq to quantitatively map the 3′ ends of the transcriptome of diverse human tissues and isogenic transformation systems. We found that cell type-specific gene expression is accomplished by two complementary programs. Tissue-restricted genes tend to have single 3′ UTRs, whereas a majority of ubiquitously transcribed genes generate multiple 3′ UTRs. During transformation and differentiation, single-UTR genes change their mRNA abundance levels, while multi-UTR genes mostly change 3′ UTR isoform ratios to achieve tissue specificity. However, both regulation programs target genes that function in the same pathways and processes that characterize the new cell type. Instead of finding global shifts in 3′ UTR length during transformation and differentiation, we identify tissue-specific groups of multi-UTR genes that change their 3′ UTR ratios; these changes in 3′ UTR length are largely independent from changes in mRNA abundance. Finally, tissue-specific usage of ApA sites appears to be a mechanism for changing the landscape targetable by ubiquitously expressed microRNAs.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Differential expression analysis for sequence count data

          High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs: genomics, biogenesis, mechanism, and function.

            MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons.

              Methylation of the N(6) position of adenosine (m(6)A) is a posttranscriptional modification of RNA with poorly understood prevalence and physiological relevance. The recent discovery that FTO, an obesity risk gene, encodes an m(6)A demethylase implicates m(6)A as an important regulator of physiological processes. Here, we present a method for transcriptome-wide m(6)A localization, which combines m(6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq). We use this method to identify mRNAs of 7,676 mammalian genes that contain m(6)A, indicating that m(6)A is a common base modification of mRNA. The m(6)A modification exhibits tissue-specific regulation and is markedly increased throughout brain development. We find that m(6)A sites are enriched near stop codons and in 3' UTRs, and we uncover an association between m(6)A residues and microRNA-binding sites within 3' UTRs. These findings provide a resource for identifying transcripts that are substrates for adenosine methylation and reveal insights into the epigenetic regulation of the mammalian transcriptome. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 November 2013
                1 November 2013
                : 27
                : 21
                : 2380-2396
                Affiliations
                [1 ]Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA;
                [2 ]Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Medical College, New York, New York 10021, USA;
                [3 ]Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
                Author notes
                [4 ]Corresponding author E-mail mayrc@ 123456mskcc.org
                Article
                8711660
                10.1101/gad.229328.113
                3828523
                24145798
                f2c019fc-86b2-495b-8fe1-ae5ac1ea3829
                © 2013 Lianoglou et al.; Published by Cold Spring Harbor Laboratory Press

                This article, published in Genes & Development, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.

                History
                : 24 August 2013
                : 17 September 2013
                Page count
                Pages: 17
                Categories
                Resource/Methodology

                alternative polyadenylation,tissue-specific regulation of gene expression,transcriptome analysis,3′ utr isoform,gene regulation,computational biology

                Comments

                Comment on this article