The fluorescence and photodissociation of rhodamine 575 cations confined to a quadrupole ion trap are observed during laser irradiation at 488 nm. The kinetics of photodissociation is measured by time-dependent mass spectra and time-dependent fluorescence. The rhodamine ion signal and fluorescence decay are studied as functions of buffer gas pressure, laser fluence, and irradiation time. The decay rates of the ions in the mass spectra agree with decay rates of the fluorescence. Some of the fragment ions also fluoresce and further dissociate. The photodissociation rate is found to depend on the incident laser fluence and buffer gas pressure. The implications of rapid absorption/fluorescence cycling for photodissociation of dye-labeled biomolecular ions under continuous irradiation are discussed.