2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanocomposite electrodes for high current density over 3 A cm−2 in solid oxide electrolysis cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Solid oxide electrolysis cells can theoretically achieve high energy-conversion efficiency, but current density must be further increased to improve the hydrogen production rate, which is essential to realize widespread application. Here, we report a structure technology for solid oxide electrolysis cells to achieve a current density higher than 3 A cm−2, which exceeds that of state-of-the-art electrolyzers. Bimodal-structured nanocomposite oxygen electrodes are developed where nanometer-scale Sm0.5Sr0.5CoO3−δ and Ce0.8Sm0.2O1.9 are highly dispersed and where submicrometer-scale particles form conductive networks with broad pore channels. Such structure is realized by fabricating the electrode structure from the raw powder material stage using spray pyrolysis. The solid oxide electrolysis cells with the nanocomposite electrodes exhibit high current density in steam electrolysis operation (e.g., at 1.3 V), reaching 3.13 A cm−2 at 750 °C and 4.08 A cm−2 at 800 °C, corresponding to a hydrogen production rate of 1.31 and 1.71 L h−1 cm−2 respectively.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Materials for fuel-cell technologies.

          Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Role of renewable energy sources in environmental protection: A review

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Factors governing oxygen reduction in solid oxide fuel cell cathodes.

                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2019
                November 28 2019
                December 2019
                : 10
                : 1
                Article
                10.1038/s41467-019-13426-5
                d3f40cdb-68e6-4eee-9a98-8c89bad2df85
                © 2019

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article