41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cortical Hierarchies Perform Bayesian Causal Inference in Multisensory Perception

      PLoS Biology
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The ventriloquist effect results from near-optimal bimodal integration.

          Ventriloquism is the ancient art of making one's voice appear to come from elsewhere, an art exploited by the Greek and Roman oracles, and possibly earlier. We regularly experience the effect when watching television and movies, where the voices seem to emanate from the actors' lips rather than from the actual sound source. Originally, ventriloquism was explained by performers projecting sound to their puppets by special techniques, but more recently it is assumed that ventriloquism results from vision "capturing" sound. In this study we investigate spatial localization of audio-visual stimuli. When visual localization is good, vision does indeed dominate and capture sound. However, for severely blurred visual stimuli (that are poorly localized), the reverse holds: sound captures vision. For less blurred stimuli, neither sense dominates and perception follows the mean position. Precision of bimodal localization is usually better than either the visual or the auditory unimodal presentation. All the results are well explained not by one sense capturing the other, but by a simple model of optimal combination of visual and auditory information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Is neocortex essentially multisensory?

            Although sensory perception and neurobiology are traditionally investigated one modality at a time, real world behaviour and perception are driven by the integration of information from multiple sensory sources. Mounting evidence suggests that the neural underpinnings of multisensory integration extend into early sensory processing. This article examines the notion that neocortical operations are essentially multisensory. We first review what is known about multisensory processing in higher-order association cortices and then discuss recent anatomical and physiological findings in presumptive unimodal sensory areas. The pervasiveness of multisensory influences on all levels of cortical processing compels us to reconsider thinking about neural processing in unisensory terms. Indeed, the multisensory nature of most, possibly all, of the neocortex forces us to abandon the notion that the senses ever operate independently during real-world cognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal oscillations and multisensory interaction in primary auditory cortex.

              Recent anatomical, physiological, and neuroimaging findings indicate multisensory convergence at early, putatively unisensory stages of cortical processing. The objective of this study was to confirm somatosensory-auditory interaction in A1 and to define both its physiological mechanisms and its consequences for auditory information processing. Laminar current source density and multiunit activity sampled during multielectrode penetrations of primary auditory area A1 in awake macaques revealed clear somatosensory-auditory interactions, with a novel mechanism: somatosensory inputs appear to reset the phase of ongoing neuronal oscillations, so that accompanying auditory inputs arrive during an ideal, high-excitability phase, and produce amplified neuronal responses. In contrast, responses to auditory inputs arriving during the opposing low-excitability phase tend to be suppressed. Our findings underscore the instrumental role of neuronal oscillations in cortical operations. The timing and laminar profile of the multisensory interactions in A1 indicate that nonspecific thalamic systems may play a key role in the effect.
                Bookmark

                Author and article information

                Journal
                10.1371/journal.pbio.1002073
                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article