6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Horizon scanning: Tools to identify emerging threats to plant health in a changing world

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the context of risk analysis, horizon scanning activity is a necessary component of any foresight process. This applies also to the specific context of biological invasions, supported and accelerated by climate change and global trade. Today, various institutions and research centres are equipped with a set of tools and methods for early warning on emerging threats. In the case of plant pests, web signals, trade data, community science data and sentinel plants are important sources of information, then analysed and elaborated through multicriteria approaches. The scope of this paper is to provide an overview of current practices, highlighting strengths and shortcomings, and to inform future research and policy initiatives about opportunities to address global change in this field.

          Analyse prospective : outils pour identifier les menaces émergentes pour la santé des végétaux dans un monde en évolution

          Dans le cadre de l'analyse du risque, l'analyse prospective est une composante nécessaire de tout processus de prévision. Cela s'applique également au contexte spécifique des invasions biologiques, favorisées et accélérées par le changement climatique et le commerce mondial. Aujourd'hui, différentes institutions et centres de recherche sont équipés d'un ensemble d'outils et de méthodes d'alerte précoce sur les menaces émergentes. Dans le cas des organismes nuisibles aux végétaux, les signalements web, les données commerciales, les données de science participative et les plantes sentinelles sont des sources d'information importantes, analysées et exploitées ensuite selon des approches multicritères. Le présent article vise à donner un aperçu des pratiques actuelles en soulignant leurs forces et faiblesses, ainsi qu'à éclairer les futures initiatives de recherche et de politique sur les possibilités d'aborder le changement global dans ce domaine.

          Сканирование горизонтов: инструменты для выявления новых угроз здоровью растений в меняющемся мире

          В рамках анализа рисков сканирование горизонтов является неотъемлемой составляющей любого процесса прогнозирования. Это относится и к вопросу биологических инвазий, поддерживаемых и ускоряемых изменением климата и глобальной торговлей. В настоящее время институты и исследовательские центры располагают различными инструментами и методами раннего предупреждения о возникающих угрозах. В случае с вредными организмами важными источниками информации являются сведения, опубликованные в информационных сетях, данные о торговле, информация научных сообществ и данные, полученные с помощью «растений‐стражников», которые затем обрабатываются и анализируются с помощью подходов, использующих разные критерии. Целью данной статьи является обзор текущих практик, выявление их сильных и слабых сторон, а также информирование будущих исследовательских и стратегических инициатив о возможных подходах к учёту глобальных изменений в этой области.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Present and future Köppen-Geiger climate classification maps at 1-km resolution

          We present new global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Climatologies at high resolution for the earth’s land surface areas

            High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              R:A Language and Environment for Statistical Computing

                Bookmark

                Author and article information

                Contributors
                Journal
                EPPO Bulletin
                EPPO Bulletin
                Wiley
                0250-8052
                1365-2338
                March 2024
                March 21 2024
                March 2024
                : 54
                : S1
                : 73-88
                Affiliations
                [1 ] European Food Safety Authority Parma Italy
                [2 ] Canadian Food Inspection Agency Ottawa Ontario Canada
                [3 ] Benaki Phytopathological Institute Attica Greece
                [4 ] CABI Wallingford UK
                [5 ] French Agency for Food, Environmental and Occupational Health and Safety Angers France
                [6 ] Department for Environment Food and Rural Affairs York UK
                [7 ] Department of Sustainable Crop Production Università Cattolica del Sacro Cuore Piacenza Italy
                [8 ] Department of Agricultural, Food and Forest Sciences University of Palermo Palermo Italy
                [9 ] European and Mediterranean Plant Protection Organization Paris France
                Article
                10.1111/epp.12988
                3832921f-224f-44d4-8f43-ed99c9ef598f
                © 2024

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article