2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary iron modulates gut microbiota and induces SLPI secretion to promote colorectal tumorigenesis

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Dietary iron intake is closely related to the incidence of colorectal cancer. However, the interactions among dietary iron, gut microbiota, and epithelial cells in promoting tumorigenesis have rarely been discussed. Here, we report that gut microbiota plays a crucial role in promoting colorectal tumorigenesis in multiple mice models under excessive dietary iron intake. Gut microbiota modulated by excessive dietary iron are pathogenic, irritating the permeability of the gut barrier and causing leakage of lumen bacteria. Mechanistically, epithelial cells released more secretory leukocyte protease inhibitor (SLPI) to combat the leaked bacteria and limit inflammation. The upregulated SLPI acted as a pro-tumorigenic factor and promoted colorectal tumorigenesis by activating the MAPK signaling pathway. Moreover, excessive dietary iron significantly depleted Akkermansiaceae in the gut microbiota; while supplementation with Akkermansia muciniphila could successfully attenuate the tumorigenic effect from excessive dietary iron. Overall, excessive dietary iron perturbs diet – microbiome–epithelium interactions, which contributes to intestinal tumor initiation.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Cancer statistics, 2022

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes. Incidence data (through 2018) were collected by the Surveillance, Epidemiology, and End Results program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2019) were collected by the National Center for Health Statistics. In 2022, 1,918,030 new cancer cases and 609,360 cancer deaths are projected to occur in the United States, including approximately 350 deaths per day from lung cancer, the leading cause of cancer death. Incidence during 2014 through 2018 continued a slow increase for female breast cancer (by 0.5% annually) and remained stable for prostate cancer, despite a 4% to 6% annual increase for advanced disease since 2011. Consequently, the proportion of prostate cancer diagnosed at a distant stage increased from 3.9% to 8.2% over the past decade. In contrast, lung cancer incidence continued to decline steeply for advanced disease while rates for localized-stage increased suddenly by 4.5% annually, contributing to gains both in the proportion of localized-stage diagnoses (from 17% in 2004 to 28% in 2018) and 3-year relative survival (from 21% to 31%). Mortality patterns reflect incidence trends, with declines accelerating for lung cancer, slowing for breast cancer, and stabilizing for prostate cancer. In summary, progress has stagnated for breast and prostate cancers but strengthened for lung cancer, coinciding with changes in medical practice related to cancer screening and/or treatment. More targeted cancer control interventions and investment in improved early detection and treatment would facilitate reductions in cancer mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diet rapidly and reproducibly alters the human gut microbiome

            Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies

              Globally, colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death. Arising through three major pathways, including adenoma-carcinoma sequence, serrated pathway and inflammatory pathway, CRC represents an aetiologically heterogeneous disease according to subtyping by tumour anatomical location or global molecular alterations. Genetic factors such as germline MLH1 and APC mutations have an aetiologic role, predisposing individuals to CRC. Yet, the majority of CRC is sporadic and largely attributable to the constellation of modifiable environmental risk factors characterizing westernization (for example, obesity, physical inactivity, poor diets, alcohol drinking and smoking). As such, the burden of CRC is shifting towards low-income and middle-income countries as they become westernized. Furthermore, the rising incidence of CRC at younger ages (before age 50 years) is an emerging trend. This Review provides a comprehensive summary of CRC epidemiology, with emphasis on modifiable lifestyle and nutritional factors, chemoprevention and screening. Overall, the optimal reduction of CRC incidence and mortality will require concerted efforts to reduce modifiable risk factors, to leverage chemoprevention research and to promote population-wide and targeted screening.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                13 June 2023
                2023
                13 June 2023
                : 15
                : 1
                : 2221978
                Affiliations
                [a ]Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University; , Guangzhou, Guangdong, China
                [b ]Department of General Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University; , Guangzhou, Guangdong, China
                [c ]Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-Sen University; , Guangzhou, Guangdong, China
                [d ]Key Laboratory of Human Microbiome and Elderly Chronic Diseases, Ministry of Education; , Guangzhou, Guangdong, China
                [e ]School of Medicine, Sun Yat-Sen University; , Guangzhou, Guangdong, China
                Author notes
                Ping Lan lanping@ 123456mail.sysu.edu.cn The Sixth Affiliated Hospital, Sun Yat-sen University; , No. 26, Yuan Cun Er Heng Road, Guangzhou, Guangdong 510655, China
                [#]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-4732-055X
                https://orcid.org/0000-0002-8901-8498
                https://orcid.org/0000-0001-8735-6672
                Article
                2221978
                10.1080/19490976.2023.2221978
                10269393
                37312410
                392a1d4a-aaed-4798-bd77-d31251865d91
                © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 7, References: 64, Pages: 1
                Categories
                Research Article
                Research Paper

                Microbiology & Virology
                excessive dietary iron,gut microbiome,colorectal cancer,secretory leukocyte protease inhibitor,tumorigenesis,epithelium

                Comments

                Comment on this article