39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Variation of an Odorant Receptor OR7D4 and Sensory Perception of Cooked Meat Containing Androstenone

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although odour perception impacts food preferences, the effect of genotypic variation of odorant receptors (ORs) on the sensory perception of food is unclear. Human OR7D4 responds to androstenone, and genotypic variation in OR7D4 predicts variation in the perception of androstenone. Since androstenone is naturally present in meat derived from male pigs, we asked whether OR7D4 genotype correlates with either the ability to detect androstenone or the evaluation of cooked pork tainted with varying levels of androstenone within the naturally-occurring range. Consistent with previous findings, subjects with two copies of the functional OR7D4 RT variant were more sensitive to androstenone than subjects carrying a non-functional OR7D4 WM variant. When pork containing varying levels of androstenone was cooked and tested by sniffing and tasting, subjects with two copies of the RT variant tended to rate the androstenone-containing meat as less favourable than subjects carrying the WM variant. Our data is consistent with the idea that OR7D4 genotype predicts the sensory perception of meat containing androstenone and that genetic variation in an odorant receptor can alter food preferences.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic variation in a human odorant receptor alters odour perception.

          Human olfactory perception differs enormously between individuals, with large reported perceptual variations in the intensity and pleasantness of a given odour. For instance, androstenone (5alpha-androst-16-en-3-one), an odorous steroid derived from testosterone, is variously perceived by different individuals as offensive ("sweaty, urinous"), pleasant ("sweet, floral") or odourless. Similar variation in odour perception has been observed for several other odours. The mechanistic basis of variation in odour perception between individuals is unknown. We investigated whether genetic variation in human odorant receptor genes accounts in part for variation in odour perception between individuals. Here we show that a human odorant receptor, OR7D4, is selectively activated in vitro by androstenone and the related odorous steroid androstadienone (androsta-4,16-dien-3-one) and does not respond to a panel of 64 other odours and two solvents. A common variant of this receptor (OR7D4 WM) contains two non-synonymous single nucleotide polymorphisms (SNPs), resulting in two amino acid substitutions (R88W, T133M; hence 'RT') that severely impair function in vitro. Human subjects with RT/WM or WM/WM genotypes as a group were less sensitive to androstenone and androstadienone and found both odours less unpleasant than the RT/RT group. Genotypic variation in OR7D4 accounts for a significant proportion of the valence (pleasantness or unpleasantness) and intensity variance in perception of these steroidal odours. Our results demonstrate the first link between the function of a human odorant receptor in vitro and odour perception.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide.

            The ability to taste the substance phenylthiocarbamide (PTC) has been widely used for genetic and anthropological studies, but genetic studies have produced conflicting results and demonstrated complex inheritance for this trait. We have identified a small region on chromosome 7q that shows strong linkage disequilibrium between single-nucleotide polymorphism (SNP) markers and PTC taste sensitivity in unrelated subjects. This region contains a single gene that encodes a member of the TAS2R bitter taste receptor family. We identified three coding SNPs giving rise to five haplotypes in this gene worldwide. These haplotypes completely explain the bimodal distribution of PTC taste sensitivity, thus accounting for the inheritance of the classically defined taste insensitivity and for 55 to 85% of the variance in PTC sensitivity. Distinct phenotypes were associated with specific haplotypes, which demonstrates that this gene has a direct influence on PTC taste sensitivity and that sequence variants at different sites interact with each other within the encoded gene product.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human olfaction: from genomic variation to phenotypic diversity.

              The sense of smell is a complex molecular device, encompassing several hundred olfactory receptor proteins (ORs). These receptors, encoded by the largest human gene superfamily, integrate odorant signals into an accurate 'odor image' in the brain. Widespread phenotypic diversity in human olfaction is, in part, attributable to prevalent genetic variation in OR genes, owing to copy number variation, deletion alleles and deleterious single nucleotide polymorphisms. The development of new genomic tools, including next generation sequencing and CNV assays, provides opportunities to characterize the genetic variations of this system. The advent of large-scale functional screens of expressed ORs, combined with genetic association studies, has the potential to link variations in ORs to human chemosensory phenotypes. This promises to provide a genome-wide view of human olfaction, resulting in a deeper understanding of personalized odor coding, with the potential to decipher flavor and fragrance preferences.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                2 May 2012
                : 7
                : 5
                : e35259
                Affiliations
                [1 ]Norwegian Meat Research Centre, Oslo, Norway
                [2 ]Institute of Chemistry, Biotechnology and Food Science, University of Life Science, Ås, Norway
                [3 ]Nofima Mat, Ås, Norway
                [4 ]Department of Molecular Genetics and Microbiology, and Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
                German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
                Author notes

                Conceived and designed the experiments: BE HM. Performed the experiments: KL BE ES JDM TL MH HM. Analyzed the data: KL BE ES JDM TL MH HM. Wrote the paper: KL BE JDM HM.

                [¤]

                Current address: Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America

                Article
                PONE-D-12-01940
                10.1371/journal.pone.0035259
                3342276
                22567099
                75026053-b4ec-4e3c-8220-5ab0e2774abf
                Lunde et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 January 2012
                : 14 March 2012
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Genetics
                Cloning
                Gene Function
                Genetic Mutation
                Genetic Screens
                Genetics of Disease
                Heredity
                Human Genetics
                Molecular Genetics
                Neuroscience
                Sensory Perception
                Psychophysics
                Sensory Systems
                Olfactory System
                Behavioral Neuroscience
                Cognitive Neuroscience
                Molecular Neuroscience
                Neurobiology of Disease and Regeneration
                Neurochemistry
                Neuropsychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article