132
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          microRNAs (miRNAs) are single-stranded, 21- to 23-nucleotide cellular RNAs that control the expression of cognate target genes. Primary miRNA (pri-miRNA) transcripts are transformed to mature miRNA by the successive actions of two RNase III endonucleases. Drosha converts pri-miRNA transcripts to precursor miRNA (pre-miRNA); Dicer, in turn, converts pre-miRNA to mature miRNA. Here, we show that normal processing of Drosophila pre-miRNAs by Dicer-1 requires the double-stranded RNA-binding domain (dsRBD) protein Loquacious (Loqs), a homolog of human TRBP, a protein first identified as binding the HIV trans-activator RNA (TAR). Efficient miRNA-directed silencing of a reporter transgene, complete repression of white by a dsRNA trigger, and silencing of the endogenous Stellate locus by Suppressor of Stellate, all require Loqs. In loqs f00791 mutant ovaries, germ-line stem cells are not appropriately maintained. Loqs associates with Dcr-1, the Drosophila RNase III enzyme that processes pre-miRNA into mature miRNA. Thus, every known Drosophila RNase-III endonuclease is paired with a dsRBD protein that facilitates its function in small RNA biogenesis.

          Abstract

          This and an accompanying paper by Saito et al. identify Loquacious, which encodes a double-stranded RNA binding domain protein, and partners with Dicer-1 in the processing of microRNAs.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Argonaute2 is the catalytic engine of mammalian RNAi.

          Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear export of microRNA precursors.

            MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III-like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate-dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro. Thus, Exp5 is key to miRNA biogenesis and may help coordinate nuclear and cytoplasmic processing steps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs.

              Argonaute proteins associate with small RNAs that guide mRNA degradation, translational repression, or a combination of both. The human Argonaute family has eight members, four of which (Ago1 through Ago4) are closely related and coexpressed in many cell types. To understand the biological function of the different Ago proteins, we set out to determine if Ago1 through Ago4 are associated with miRNAs as well as RISC activity in human cell lines. Our results suggest that miRNAs are incorporated indiscriminately of their sequence into Ago1 through Ago4 containing microRNPs (miRNPs). Purification of the FLAG/HA-epitope-tagged Ago containing complexes from different human cell lines revealed that endonuclease activity is exclusively associated with Ago2. Exogenously introduced siRNAs also associate with Ago2 for guiding target RNA cleavage. The specific role of Ago2 in guiding target RNA cleavage was confirmed independently by siRNA-based depletion of individual Ago members in combination with a sensitive positive-readout reporter assay.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                July 2005
                24 May 2005
                : 3
                : 7
                : e236
                Affiliations
                [1] 1 Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,
                [2] 2 Institute of Molecular Genetics of RAS, Moscow, Russia,
                [3] 3 Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
                [4] 4 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,
                Oregon State University United States of America
                Article
                10.1371/journal.pbio.0030236
                1141267
                15918770
                121f4b4f-288c-4cb6-a4a2-4eba0f05c57b
                Copyright: © 2005 Förstemann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
                History
                : 14 March 2005
                : 30 April 2005
                Categories
                Research Article
                Bioinformatics/Computational Biology
                Cell Biology
                Development
                Genetics/Genomics/Gene Therapy
                Molecular Biology/Structural Biology
                Biochemistry
                Drosophila

                Life sciences
                Life sciences

                Comments

                Comment on this article