72
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dust and molecular shells in asymptotic giant branch stars - Mid-infrared interferometric observations of R Aql, R Aqr, R Hya, W Hya and V Hya

      Preprint
      , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mid-IR (8 - 13 micron) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon-rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009. The spectrally dispersed visibility data are analyzed by fitting a circular fully limb-darkened disk (FDD). Results. The FDD diameter as function of wavelength is similar for all oxygen-rich stars. The apparent size is almost constant between 8 and 10 micron and gradually increases at wavelengths longer than 10 micron. The apparent FDD diameter in the carbon-rich star V Hya essentially decreases from 8 to 12 micron. The FDD diameters are about 2.2 times larger than the photospheric diameters estimated from K-band observations found in the literature. The silicate dust shells of R Aql, R Hya and W Hya are located fairly far away from the star, while the silicate dust shell of R Aqr and the amorphous carbon (AMC) and SiC dust shell of V Hya are found to be closer to the star at around 8 photospheric radii. Phase-to-phase variations of the diameters of the oxygen-rich stars could be measured and are on the order of 15% but with large uncertainties. From a comparison of the diameter trend with the trends in RR Sco and S Ori it can be concluded that in oxygen-rich stars the overall larger diameter originates from a warm molecular layer of H2O, and the gradual increase longward of 10 micron can be most likely attributed to the contribution of a close Al2O3 dust shell. The chromatic trend of the Gaussian FWHM in V Hya can be explained with the presence of AMC and SiC dust. The observations suggest that the formation of amorphous Al2O3 in oxygen- rich stars occurs mainly around or after visual minimum. However, no firm conclusions can be drawn concerning the mass-loss mechanism.

          Related collections

          Author and article information

          Journal
          12 July 2012
          Article
          10.1051/0004-6361/201118150
          1207.3767
          0b95f00a-29e7-49dc-985f-2d054e696360

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          32 pages (including 7 pages appendix), 10 figures
          astro-ph.SR

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content219

          Cited by4