3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiphase simulation of sustainable nanoenhanced ionic liquid coolants for improved thermal performance in Ti–6Al–4V alloy drilling

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extensive research has been conducted by the manufacturing industry to enhance the efficiency of drilling processes by focusing on the utilization of nanoenhanced cutting fluids that possess excellent heat conductivity. Due to their eco-friendliness and adaptability of physical and chemical properties, ionic fluids offer enormous potential for application as cutting fluids. This study investigates the computational fluid dynamics analysis of the heat transfer performance of various ionanofluid pairs dispersed with nanoparticles as cutting fluids in the drilling process using Ansys Fluent software. For this purpose, 1-Hexyl-3-methyl-imidazolium-tetrafluoroborate is considered the ionic fluid, and its thermal behavior is examined by dispersing it with nanoparticles of copper, silver, and multiwalled carbon nanotubes (MWCNT) at different particle volume fractions and Reynolds numbers. The workpiece is composed of an alloy of titanium Ti–6Al–4V, while the drill bit is made of tungsten carbide-cobalt. It is observed that the ionic nanocoolant mist emanates from the spray tip and moves towards the drill bit-workpiece interface. Initially, the coolant's velocity is greatest close to the orifice, and as time passes, it approaches the drilling space. The data indicates that the spraying velocity of the coolant augments over time and that it disperses heat at the tool-chip interface. The results help us validate the flow and interaction of ionanocoolant with the drilling zone. With a rise in the volume fraction of added nanoparticles and Reynolds number, the results indicated a significant decrease in the drilling temperature. With a higher particle volume fraction, the MWCNT-ionic coolant combination decreases the drilling temperature of pure ionic liquid by 25.64 %. The copper, silver, and MWCNT ionanofluids enhance the average heat transfer coefficient of pure ionic coolant by 35.14 %, 47.42 %, and 62.75 %, respectively. In addition, MWCNT nanocoolants demonstrated improved thermal performance and heat removal rate in comparison to copper and silver ionanocoolants.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model

                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                29 November 2023
                December 2023
                29 November 2023
                : 9
                : 12
                : e23020
                Affiliations
                [1]School of Mechanical Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu-600127, India
                Author notes
                Article
                S2405-8440(23)10228-3 e23020
                10.1016/j.heliyon.2023.e23020
                10703718
                38076113
                9adfcdf9-d67b-4f63-b777-0d534561839a
                © 2023 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 August 2023
                : 28 September 2023
                : 23 November 2023
                Categories
                Research Article

                ionic liquid,nanocoolant,carbon nanotube,drilling temperature,titanium alloy

                Comments

                Comment on this article