3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Satisfaction with nursing care and its related factors in patients with COVID-19: A descriptive correlational study

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND:

          Patients’ satisfaction is a fundamental factor in the quality of nursing care. The emergence of the novel Coronavirus Disease 2019 (COVID-19) and the highly contagious virus can affect nursing care by increasing the number of care-seekers. This study aimed to determine the patients’ satisfaction and related factors in patients with COVID-19 hospitalized in Taleghani Hospital, Urmia-Iran, in 2020.

          MATERIALS AND METHODS:

          This descriptive, correlational study was conducted on 196 patients with COVID-19 hospitalized in Taleghani Hospital, Urmia. Purposive convenient sampling was used to recruit participants. Study participants completed Patient Satisfaction Instrument and demographics questionnaires. Data were analyzed with the SPSS software version 25.0.

          RESULTS:

          The majority of patients (68.9%) were moderately satisfied with nursing care. Based on Pearson Correlation Analysis, only residential status had a significant inverse relationship with satisfaction level in patients with COVID-19 ( r = −0.0238, P = 0.001).

          CONCLUSIONS:

          The patients’ satisfaction with nursing care was mostly at a moderate level. Thus, there is a need to educate health personnel and nurses in particular and motivate them to have active participation in achieving patients’ satisfaction with COVID-19. Notably, only the institutes that take patients’ satisfaction as a top priority can succeed in a competitive market of health services.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China

          China and the rest of the world are experiencing an outbreak of a novel betacoronavirus known as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). 1 By Feb 12, 2020, the rapid spread of the virus had caused 42 747 cases and 1017 deaths in China and cases have been reported in 25 countries, including the USA, Japan, and Spain. WHO has declared 2019 novel coronavirus disease (COVID-19), caused by SARS-CoV-2, a public health emergency of international concern. In contrast to severe acute respiratory system coronavirus and Middle East respiratory syndrome coronavirus, more deaths from COVID-19 have been caused by multiple organ dysfunction syndrome rather than respiratory failure, 2 which might be attributable to the widespread distribution of angiotensin converting enzyme 2—the functional receptor for SARS-CoV-2—in multiple organs.3, 4 Patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments, such as chemotherapy or surgery.5, 6, 7, 8 Therefore, these patients might be at increased risk of COVID-19 and have a poorer prognosis. On behalf of the National Clinical Research Center for Respiratory Disease, we worked together with the National Health Commission of the People's Republic of China to establish a prospective cohort to monitor COVID-19 cases throughout China. As of the data cutoff on Jan 31, 2020, we have collected and analysed 2007 cases from 575 hospitals (appendix pp 4–9 for a full list) in 31 provincial administrative regions. All cases were diagnosed with laboratory-confirmed COVID-19 acute respiratory disease and were admitted to hospital. We excluded 417 cases because of insufficient records of previous disease history. 18 (1%; 95% CI 0·61–1·65) of 1590 COVID-19 cases had a history of cancer, which seems to be higher than the incidence of cancer in the overall Chinese population (285·83 [0·29%] per 100 000 people, according to 2015 cancer epidemiology statistics 9 ). Detailed information about the 18 patients with cancer with COVID-19 is summarised in the appendix (p 1). Lung cancer was the most frequent type (five [28%] of 18 patients). Four (25%) of 16 patients (two of the 18 patients had unknown treatment status) with cancer with COVID-19 had received chemotherapy or surgery within the past month, and the other 12 (25%) patients were cancer survivors in routine follow-up after primary resection. Compared with patients without cancer, patients with cancer were older (mean age 63·1 years [SD 12·1] vs 48·7 years [16·2]), more likely to have a history of smoking (four [22%] of 18 patients vs 107 [7%] of 1572 patients), had more polypnea (eight [47%] of 17 patients vs 323 [23%] of 1377 patients; some data were missing on polypnea), and more severe baseline CT manifestation (17 [94%] of 18 patients vs 1113 [71%] of 1572 patients), but had no significant differences in sex, other baseline symptoms, other comorbidities, or baseline severity of x-ray (appendix p 2). Most importantly, patients with cancer were observed to have a higher risk of severe events (a composite endpoint defined as the percentage of patients being admitted to the intensive care unit requiring invasive ventilation, or death) compared with patients without cancer (seven [39%] of 18 patients vs 124 [8%] of 1572 patients; Fisher's exact p=0·0003). We observed similar results when the severe events were defined both by the above objective events and physician evaluation (nine [50%] of 18 patients vs 245 [16%] of 1572 patients; Fisher's exact p=0·0008). Moreover, patients who underwent chemotherapy or surgery in the past month had a numerically higher risk (three [75%] of four patients) of clinically severe events than did those not receiving chemotherapy or surgery (six [43%] of 14 patients; figure ). These odds were further confirmed by logistic regression (odds ratio [OR] 5·34, 95% CI 1·80–16·18; p=0·0026) after adjusting for other risk factors, including age, smoking history, and other comorbidities. Cancer history represented the highest risk for severe events (appendix p 3). Among patients with cancer, older age was the only risk factor for severe events (OR 1·43, 95% CI 0·97–2·12; p=0·072). Patients with lung cancer did not have a higher probability of severe events compared with patients with other cancer types (one [20%] of five patients with lung cancer vs eight [62%] of 13 patients with other types of cancer; p=0·294). Additionally, we used a Cox regression model to evaluate the time-dependent hazards of developing severe events, and found that patients with cancer deteriorated more rapidly than those without cancer (median time to severe events 13 days [IQR 6–15] vs 43 days [20–not reached]; p<0·0001; hazard ratio 3·56, 95% CI 1·65–7·69, after adjusting for age; figure). Figure Severe events in patients without cancer, cancer survivors, and patients with cancer (A) and risks of developing severe events for patients with cancer and patients without cancer (B) ICU=intensive care unit. In this study, we analysed the risk for severe COVID-19 in patients with cancer for the first time, to our knowledge; only by nationwide analysis can we follow up patients with rare but important comorbidities, such as cancer. We found that patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Additionally, we showed that patients with cancer had poorer outcomes from COVID-19, providing a timely reminder to physicians that more intensive attention should be paid to patients with cancer, in case of rapid deterioration. Therefore, we propose three major strategies for patients with cancer in this COVID-19 crisis, and in future attacks of severe infectious diseases. First, an intentional postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered in endemic areas. Second, stronger personal protection provisions should be made for patients with cancer or cancer survivors. Third, more intensive surveillance or treatment should be considered when patients with cancer are infected with SARS-CoV-2, especially in older patients or those with other comorbidities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mental health care for medical staff in China during the COVID-19 outbreak

            In December, 2019, an outbreak of a novel coronavirus pneumonia occurred in Wuhan (Hubei, China), and subsequently attracted worldwide attention. 1 By Feb 9, 2020, there were 37 294 confirmed and 28 942 suspected cases of 2019 coronavirus disease (COVID-19) in China. 2 Facing this large-scale infectious public health event, medical staff are under both physical and psychological pressure. 3 To better fight the COVID-19 outbreak, as the largest top-class tertiary hospital in Hunan Province, the Second Xiangya Hospital of Central South University undertakes a considerable part of the investigation of suspected patients. The hospital has set up a 24-h fever clinic, two mild suspected infection patient screening wards, and one severe suspected infection patient screening ward. In addition to the original medical staff at the infectious disease department, volunteer medical staff have been recruited from multiple other departments. The Second Xiangya Hospital—workplace of the chairman of the Psychological Rescue Branch of the Chinese Medical Rescue Association—and the Institute of Mental Health, the Medical Psychology Research Center of the Second Xiangya Hospital, and the Chinese Medical and Psychological Disease Clinical Medicine Research Center responded rapidly to the psychological pressures on staff. A detailed psychological intervention plan was developed, which mainly covered the following three areas: building a psychological intervention medical team, which provided online courses to guide medical staff to deal with common psychological problems; a psychological assistance hotline team, which provided guidance and supervision to solve psychological problems; and psychological interventions, which provided various group activities to release stress. However, the implementation of psychological intervention services encountered obstacles, as medical staff were reluctant to participate in the group or individual psychology interventions provided to them. Moreover, individual nurses showed excitability, irritability, unwillingness to rest, and signs of psychological distress, but refused any psychological help and stated that they did not have any problems. In a 30-min interview survey with 13 medical staff at The Second Xiangya Hospital, several reasons were discovered for this refusal of help. First, getting infected was not an immediate worry to staff—they did not worry about this once they began work. Second, they did not want their families to worry about them and were afraid of bringing the virus to their home. Third, staff did not know how to deal with patients when they were unwilling to be quarantined at the hospital or did not cooperate with medical measures because of panic or a lack of knowledge about the disease. Additionally, staff worried about the shortage of protective equipment and feelings of incapability when faced with critically ill patients. Many staff mentioned that they did not need a psychologist, but needed more rest without interruption and enough protective supplies. Finally, they suggested training on psychological skills to deal with patients' anxiety, panic, and other emotional problems and, if possible, for mental health staff to be on hand to directly help these patients. Accordingly, the measures of psychological intervention were adjusted. First, the hospital provided a place for rest where staff could temporarily isolate themselves from their family. The hospital also guaranteed food and daily living supplies, and helped staff to video record their routines in the hospital to share with their families and alleviate family members' concerns. Second, in addition to disease knowledge and protective measures, pre-job training was arranged to address identification of and responses to psychological problems in patients with COVID-19, and hospital security staff were available to be sent to help deal with uncooperative patients. Third, the hospital developed detailed rules on the use and management of protective equipment to reduce worry. Fourth, leisure activities and training on how to relax were properly arranged to help staff reduce stress. Finally, psychological counsellors regularly visited the rest area to listen to difficulties or stories encountered by staff at work, and provide support accordingly. More than 100 frontline medical staff can rest in the provided rest place, and most of them report feeling at home in this accomodation. Maintaining staff mental health is essential to better control infectious diseases, although the best approach to this during the epidemic season remains unclear.4, 5 The learning from these psychological interventions is expected to help the Chinese government and other parts of the world to better respond to future unexpected infectious disease outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occupational risks for COVID-19 infection

              David Koh (2020)
              Coronaviruses are enveloped RNA viruses found in mammals, birds and humans. At present, six coronavirus species are known agents for illnesses in humans. Four viruses—229E, OC43, NL63 and HKU1—are prevalent and can cause respiratory symptoms. The other two—severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)—are zoonotic in origin and can cause fatalities [1]. SARS-CoV originated in Guangdong Province, China and was responsible for the severe acute respiratory syndrome outbreaks in 2002 and 2003. It rapidly spread across the globe and resulted in 8098 reported cases and 774 deaths (case-fatality rate, 9.6%) in 37 countries. MERS-CoV originated in the Middle East and caused severe respiratory disease outbreaks in 2012. Since 2012, there have been 2494 reported MERS-CoV cases resulting in 858 deaths (case-fatality rate, 34%) in 27 countries. There were also several rapid outbreaks reported, mainly in hospitals in Saudi Arabia, Jordan and South Korea [2]. On 31 December 2019, the World Health Organization (WHO) China office was informed of cases of pneumonia of unknown aetiology detected in Wuhan city in Hubei Province, central China [3]. By 9 January 2020, WHO released a statement on the cluster of cases, which stated that ‘Chinese authorities have made a preliminary determination of a novel (or new) coronavirus, identified in a hospitalized person with pneumonia in Wuhan’ [4]. The virus was initially referred to as 2019-nCoV, but has since been re-named as SARS-CoV-2 by the WHO on 12 February 2020. Early indications are that the overall case-fatality rate is around 2%. An analysis of the first 425 cases provided an estimated mean incubation period of 5.2 days (95% confidence interval [CI] 4.1–7.0) and a basic reproductive number (R o) of 2.2 (95% CI 1.4–3.9) [1]. It is possible that people with Coronavirus Disease 2019 (COVID-19) may be infectious even before showing significant symptoms [5]. However, based on currently available data, those who have symptoms are causing the majority of virus spread. The WHO declared this disease as a Public Health Emergency of International Concern (PHEIC) on 30 January 2020 [6]. A significant proportion of cases are related to occupational exposure. As this virus is believed to have originated from wildlife and then crossed the species barrier to infect humans, it is not unexpected that the first documented occupational groups at risk were persons working in seafood and wet animal wholesale markets in Wuhan. At the start of the outbreak, workers and visitors to the market comprised 55% of the 47 cases with onset before 1 January 2020, when the wholesale market was closed. In comparison, only 8.5% of the 378 cases with onset of symptoms after 1 January 2020 had a link with exposure at the market [1]. As cases increased and required health care, health care workers (HCWs) were next recognized as another high-risk group to acquire this infection. In a case series of 138 patients treated in a Wuhan hospital, 40 patients (29% of cases) were HCWs. Among the affected HCWs, 31 (77.5%) worked on general wards, 7 (17.5%) in the emergency department, and 2 (5%) in the intensive care unit (ICU). There was apparently a super-spreader patient encountered in the hospital, who presented with abdominal symptoms and was admitted to the surgical department. This patient infected >10 HCWs in the department [7]. China’s Vice-Minister at the National Health Commission said that 1716 health workers had been infected in the country as of Tuesday 11 February 2020, among whom 6 have died [8]. Outside of China, the first confirmed case of COVID-19 infection in Singapore was announced on 23 January 2020 by the Ministry of Health, Singapore (MOH-Sg). The MOH-Sg issues daily press reports to describe case details of confirmed COVID-19 patients. As of 11 February 2020, a total of 47 cases have been confirmed [9]. Among the first 25 locally transmitted cases, 17 cases (68%) were probably related to occupational exposure (Table 1). They included staff in the tourism, retail and hospitality industry, transport and security workers, and construction workers. Table 1. Probable occupationally acquired COVID-19 among 25 locally transmitted cases in Singapore, 4–11 February 2020 Case description (case no.a) No. of cases Staff working in a retail store selling complementary health products primarily serving Chinese tourists (Cases 19, 20, 34, 40) 4 Domestic worker who worked for Case 19 (Case 21) 1 Tour guide who led tour group from China (Case 24) 1 Jewellery store worker who served Chinese tourists (Case 25) 1 Multinational company staff attending an international business meeting in Singapore (Cases 30, 36, 39) 3 Taxi driver (Case 35) 1 Private hire car driver (Case 37) 1 Resorts World Sentosa employee (Case 43) 1 Security officer who served quarantine order to two persons (Case 44) 1 Casino worker (Case 46) 1 Cluster of two workers at the same construction siteb (Cases 42 and 47) 2 aThe case no. denotes the order of cases according to the time of announcement by the Ministry of Health, Singapore. The first 18 cases were imported cases. bTwo other cases (Cases 52 and 56) were reported from the same worksite 2 days later. An international business meeting for 109 staff was organized by a multinational company from 20–22 January 2020 in Singapore. At this event, healthy company workers interacted with other infected participants, which resulted in the transmission of the virus to three employees based in Singapore. Besides those infected from Singapore, one employee from Malaysia, two participants from South Korea and one staff member from the UK were also infected. They presented as cases after leaving Singapore. Crew on board cruise ships with infected passengers are also at risk. At least 10 cases have been reported among the 1035 crew on the liner Diamond Princess, which is currently docked in Yokohama with around 3600 people quarantined since 3 February 2020. A Hong Kong man boarded the ship on 20 January in Yokohama at the beginning of a 14-day round trip cruise. The passenger sailed from Yokohama to Hong Kong, where he disembarked on 25 January. The ship continued its journey, until news was received that the passenger tested positive on 1 February 2020. The Diamond Princess returned to Yokohama a day early, and has been quarantined since then, with guests isolated in their cabins and screened [10]. The quarantine period will end on 19 February 2020. Another cruise ship, the Dutch liner Westerdam, sailed out of Hong Kong on 1 February 2020. It was turned away by the Philippines, Taiwan, Korea, Japan, Thailand and the US territory of Guam, because of fears arising from the COVID-19 outbreak—even though there was apparently no confirmed case on board [11]. The ship was finally allowed to dock in Sihanoukville, Cambodia after 13 days at sea. Besides fears of contagion from people on board cruise ships, which have been likened to ‘floating petri dishes’, fears are also widespread on land. There are increasing reports of HCWs being shunned and harassed by a fearful public because of their occupation. A Member of Parliament in Singapore highlighted what he termed as ‘disgraceful actions’ against HCWs stemming from fear and panic [12]. Some examples of behaviour described were: Taxi drivers reluctant to pick up staff in medical uniform. A healthcare professional’s private-hire vehicle cancelled because she was going to a hospital. A nurse in a lift asked why she was not taking the stairs and that she was spreading the virus to others by taking the lift. A nurse scolded for making the Mass Rapid Transit train “dirty” and spreading the virus. An ambulance driver turned away by food stall workers. However, not all the reactions from the public towards HCWs have been negative. There are probably an equal number of stories of public support and encouragement. Members of the public have showed their appreciation for HCWs and have volunteered to help the more vulnerable in society [13]. For example, a ride-hailing transport operator started a new service offering a dedicated 24-h service for HCWs travelling from work. Volunteers have also stepped forward to distribute hand sanitizers and masks to the elderly and vulnerable in their community, while sharing important public health messages. Such reactions are reminiscent of behaviour during the 2003 SARS outbreak, where not only the general public, but even close family members were afraid of being infected by HCWs exposed to the disease. A survey of over 10 000 HCWs in Singapore during the SARS outbreak of 2003 reported that many respondents experienced social stigmatization. Almost half (49%) thought that ‘people avoid me because of my job’ and 31% felt that ‘people avoid my family members because of my job’. For example, some parents of schoolchildren forbade their children to play or be close to children of HCWs. A large number (69%) of HCWs also felt that ‘people close to me are worried they might get infected through me’ [14]. On the other hand, there was also massive public support for HCWs, who were hailed as heroes in the fight against the disease. Most of the HCWs (77%) felt appreciated by society. COVID-19 is the first new occupational disease to be described in this decade. Our experiences in coping with the previous SARS-CoV and MERS-CoV outbreaks have better prepared us to face this new challenge. While the explosive increase in cases in China has overwhelmed the health care system initially, we know that public health measures such as early detection, quarantine and isolation of cases can be effective in containing the outbreak. All health personnel should be alert to the risk of COVID-19 in a wide variety of occupations, and not only HCWs. These occupational groups can be protected by good infection control practices. These at-risk groups should also be given adequate social and mental health support [15], which are needed but which are sometimes overlooked.
                Bookmark

                Author and article information

                Journal
                J Educ Health Promot
                J Educ Health Promot
                JEHP
                Journal of Education and Health Promotion
                Wolters Kluwer - Medknow (India )
                2277-9531
                2319-6440
                2021
                30 November 2021
                : 10
                : 437
                Affiliations
                [1] Patient Safety Research Center, Clinical Research Institute, Nursing and Midwifery School, Urmia University of Medical Sciences, Urmia, Iran
                [1 ] Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences, Urmia, Iran
                [2 ] Department of Psychiatric Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences, Urmia, Iran
                [3 ] Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Urmia University of Medical Sciences, Urmia, Iran
                Author notes
                Address for correspondence: Mr. Rasoul Goli, Nursing and Midwifery Faculty, Campus Nazlu, 11 KM Road Seru, Urmia, West Azerbaijan, Iran. E-mail: rasoulgoli94@ 123456gmail.com
                Article
                JEHP-10-437
                10.4103/jehp.jehp_79_21
                8719559
                972e63f2-b3d5-4d4e-ade8-14439f354908
                Copyright: © 2021 Journal of Education and Health Promotion

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 16 January 2021
                : 22 April 2021
                Categories
                Original Article

                covid-19,nurses,nursing care,pandemics,patient satisfaction
                covid-19, nurses, nursing care, pandemics, patient satisfaction

                Comments

                Comment on this article