7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Climatic zonation of Egypt based on high-resolution dataset using image clustering technique

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Egypt, a predominantly arid and hyper-arid country, is one of the environmentally most fragile regions of the world. The country became a hot spot for climatic extremes and aridity change in the global warming context. The unavailability of a detailed and reliable climate zonation map is a major hindrance to climatic studies in Egypt. This study attempted to generate a high-resolution climate zone map of Egypt based on a novel image analysis technique. For this purpose, a colored image representing Egypt's composite climatology was developed using three high-resolution (1-km) climate variables: rainfall, maximum temperature and minimum temperature during 1979–2013. A spherical evolution algorithm was used to classify the image into different climate zones. Subsequently, the climate zones representing similar climate distribution were merged to generate the climate map of Egypt. The study revealed that Egypt’s distinguishable climate zones could be recognized when the land area was classified into nine zones using the image analysis technique. The statistical analysis of climate variables of each zone revealed similar climatology only in two pairs of zones. The merging of similar climate zones yielded seven climate zones having distinct climate characteristics. The validation of climate zonation using various statistical tests revealed the robustness of the proposed method in classifying climate. The climate zone map generated in the study can be used as a reference for climate change analysis in Egypt.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: not found
          • Article: not found

          World Map of the Köppen-Geiger climate classification updated

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Updated world map of the Köppen-Geiger climate classification

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climatologies at high resolution for the earth’s land surface areas

              High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Progress in Earth and Planetary Science
                Prog Earth Planet Sci
                Springer Science and Business Media LLC
                2197-4284
                December 2022
                June 17 2022
                December 2022
                : 9
                : 1
                Article
                10.1186/s40645-022-00494-3
                1801365a-3714-4f78-ba1f-9b8e6b1e7f0a
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article