1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemometric Analysis of Bacterial Peptidoglycan Reveals Atypical Modifications That Empower the Cell Wall against Predatory Enzymes and Fly Innate Immunity.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Peptidoglycan structure and architecture.

          The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SAR11 clade dominates ocean surface bacterioplankton communities.

            The most abundant class of bacterial ribosomal RNA genes detected in seawater DNA by gene cloning belongs to SAR11-an alpha-proteobacterial clade. Other than indications of their prevalence in seawater, little is known about these organisms. Here we report quantitative measurements of the cellular abundance of the SAR11 clade in northwestern Sargasso Sea waters to 3,000 m and in Oregon coastal surface waters. On average, the SAR11 clade accounts for a third of the cells present in surface waters and nearly a fifth of the cells present in the mesopelagic zone. In some regions, members of the SAR11 clade represent as much as 50% of the total surface microbial community and 25% of the subeuphotic microbial community. By extrapolation, we estimate that globally there are 2.4 x 10(28) SAR11 cells in the oceans, half of which are located in the euphotic zone. Although the biogeochemical role of the SAR11 clade remains uncertain, these data support the conclusion that this microbial group is among the most successful organisms on Earth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type VI secretion delivers bacteriolytic effectors to target cells

              Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enyzmes by the outer membrane. Here we show that the type VI secretion system (T6SS) of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyze peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa utilizes specific periplasmically-localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active T6SS, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.
                Bookmark

                Author and article information

                Journal
                J. Am. Chem. Soc.
                Journal of the American Chemical Society
                American Chemical Society (ACS)
                1520-5126
                0002-7863
                Jul 27 2016
                : 138
                : 29
                Affiliations
                [1 ] Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University , 90187 Umeå, Sweden.
                [2 ] Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas , Ramiro de Maeztu 9, 28040 Madrid, Spain.
                [3 ] Department of Chemistry, Umeå University , 90187 Umeå, Sweden.
                [4 ] Global Health Institute, Swiss Federal Institute of Technology , Station 19, CH-1015 Lausanne, Switzerland.
                [5 ] Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas , Madrid 28049, Spain.
                Article
                10.1021/jacs.6b04430
                27337563
                a7045cd3-469a-477d-a37e-023d258bb286
                History

                Comments

                Comment on this article