172
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Silk-based biomaterials

      , , , , , , , ,
      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Electrospinning of Collagen Nanofibers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.

            The physico-mechanical properties of degradable polymers used for medical applications have been characterized. The following polymers were included in this study: three samples of poly(ortho esters) derived from 3,9-bis(ethylidene 2,4,8,10-tetraoxaspiro[5,5]undecane) and various ratios of 1,6-hexanediol and trans-cyclohexane dimethanol, poly(glycolic acid), six samples of poly(L-lactic acid) and poly(D,L-lactic acid) with mol wt from 21,000 to 550,000, poly(epsilon-caprolactone), poly(beta-hydroxybutyrate) and three copolymers of beta-hydroxybutyric acid and various amounts of hydroxyvaleric acid, one sample each of two different types of poly(anhydrides), poly(trimethylene carbonate) and two different poly(imino-carbonates). For each polymer, the thermal properties (glass transition temperature, crystallization, melting and decomposition points) were determined by differential scanning calorimetry and by thermogravimetric analysis. The tensile properties (Young's modulus, tensile strength and elongation at yield and break) were determined by tensile testing on an Instron stress-strain tester. The flexural storage modulus as a function of temperature was determined by dynamic mechanical analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.

              Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.
                Bookmark

                Author and article information

                Journal
                Biomaterials
                Biomaterials
                Elsevier BV
                01429612
                February 2003
                February 2003
                : 24
                : 3
                : 401-416
                Article
                10.1016/S0142-9612(02)00353-8
                fd88c861-e878-4213-bcb7-dae6511c67e1
                © 2003

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article