3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Untangling the roles of RNA helicases in antiviral innate immunity

      review-article
      , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness

          Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles

            Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 µg g−1 and 4.39 µg g−1, respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metazoan MicroRNAs

              MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                9 December 2021
                December 2021
                : 17
                : 12
                : e1010072
                Affiliations
                [001] Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
                University of Alberta, CANADA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0003-1154-0013
                https://orcid.org/0000-0002-8458-348X
                Article
                PPATHOGENS-D-21-01970
                10.1371/journal.ppat.1010072
                8659333
                34882751
                efae6393-0f5e-4803-b9d1-6a91dd4b067e
                © 2021 Baldaccini, Pfeffer

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Figures: 5, Tables: 0, Pages: 19
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100010663, H2020 European Research Council;
                Award ID: ERC-CoG-647455
                Award Recipient :
                Funded by: Agence Nationale de la Recherche
                Award ID: ANR-10-IDEX-0002
                Award Recipient :
                Funded by: Agence Nationale de la Recherche
                Award ID: ANR-17-EURE-0023
                Award Recipient :
                Our work is funded by European Research Council (ERC-CoG-647455 RegulRNA, to SP) and Agence Nationale de la Recherche through the Interdisciplinary Thematic Institute IMCBio, part of the ITI 2021-2028 program of the University of Strasbourg, CNRS and Inserm (ANR-10-IDEX-0002 and ANR-17-EURE-0023, to SP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Helicases
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Helicases
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                Small interfering RNA
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                Small interfering RNA
                Biology and life sciences
                Genetics
                Epigenetics
                RNA interference
                Biology and life sciences
                Genetics
                Gene expression
                RNA interference
                Biology and life sciences
                Genetics
                Genetic interference
                RNA interference
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA interference
                Biology and life sciences
                Biochemistry
                Enzymology
                Enzymes
                Helicases
                RNA helicases
                Biology and life sciences
                Biochemistry
                Proteins
                Enzymes
                Helicases
                RNA helicases
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Transmission and Infection
                Biology and life sciences
                Molecular biology
                Macromolecular structure analysis
                RNA structure
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                RNA structure
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Drosophila Melanogaster
                Research and Analysis Methods
                Model Organisms
                Drosophila Melanogaster
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Drosophila Melanogaster
                Biology and Life Sciences
                Zoology
                Entomology
                Insects
                Drosophila
                Drosophila Melanogaster
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Arthropoda
                Insects
                Drosophila
                Drosophila Melanogaster
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Arthropoda
                Insects
                Drosophila
                Drosophila Melanogaster
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Caenorhabditis Elegans
                Research and Analysis Methods
                Model Organisms
                Caenorhabditis Elegans
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Caenorhabditis Elegans
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Caenorhabditis
                Caenorhabditis Elegans
                Biology and Life Sciences
                Zoology
                Animals
                Invertebrates
                Nematoda
                Caenorhabditis
                Caenorhabditis Elegans

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article