3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging Personalized Opportunities for Enhancing Translational Readthrough in Rare Genetic Diseases and Beyond

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonsense mutations trigger premature translation termination and often give rise to prevalent and rare genetic diseases. Consequently, the pharmacological suppression of an unscheduled stop codon represents an attractive treatment option and is of high clinical relevance. At the molecular level, the ability of the ribosome to continue translation past a stop codon is designated stop codon readthrough (SCR). SCR of disease-causing premature termination codons (PTCs) is minimal but small molecule interventions, such as treatment with aminoglycoside antibiotics, can enhance its frequency. In this review, we summarize the current understanding of translation termination (both at PTCs and at cognate stop codons) and highlight recently discovered pathways that influence its fidelity. We describe the mechanisms involved in the recognition and readthrough of PTCs and report on SCR-inducing compounds currently explored in preclinical research and clinical trials. We conclude by reviewing the ongoing attempts of personalized nonsense suppression therapy in different disease contexts, including the genetic skin condition epidermolysis bullosa.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.

          Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptome-wide measurement of translation by ribosome profiling

            Translation is one of the fundamental processes of life. It comprises the assembly of polypeptides whose amino acid sequence corresponds to the codon sequence of an mRNA's ORF. Translation is performed by the ribosome; therefore, in order to understand translation and its regulation we must be able to determine the numbers and locations of ribosomes on mRNAs in vivo. Furthermore, we must be able to examine their redistribution in different physiological contexts and in response to experimental manipulations. The ribosome profiling method provides us with an opportunity to learn these locations, by sequencing a cDNA library derived from the short fragments of mRNA covered by the ribosome. Since its original description, the ribosome profiling method has undergone continuing development; in this article we describe the method's current state. Important improvements include: the incorporation of sample barcodes to enable library multiplexing, the incorporation of unique molecular identifiers to enable to removal of duplicated sequences, and the replacement of a gel-purification step with the enzymatic degradation of unligated linker.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A meta-analysis of nonsense mutations causing human genetic disease.

              Nonsense mutations account for approximately 11% of all described gene lesions causing human inherited disease and approximately 20% of disease-associated single-basepair substitutions affecting gene coding regions. Pathological nonsense mutations resulting in TGA (38.5%), TAG (40.4%), and TAA (21.1%) occur in different proportions to naturally occurring stop codons. Of the 23 different nucleotide substitutions giving rise to nonsense mutations, the most frequent are CGA --> TGA (21%; resulting from methylation-mediated deamination) and CAG --> TAG (19%). The differing nonsense mutation frequencies are largely explicable in terms of variable nucleotide substitution rates such that it is unnecessary to invoke differential translational termination efficiency or differential codon usage. Some genes are characterized by numerous nonsense mutations but relatively few if any missense mutations (e.g., CHM) whereas other genes exhibit many missense mutations but few if any nonsense mutations (e.g., PSEN1). Genes in the latter category have a tendency to encode proteins characterized by multimer formation. Consistent with the operation of a clinical selection bias, genes exhibiting an excess of nonsense mutations are also likely to display an excess of frameshift mutations. Tumor suppressor (TS) genes exhibit a disproportionate number of nonsense mutations while most mutations in oncogenes are missense. A total of 12% of somatic nonsense mutations in TS genes were found to occur recurrently in the hypermutable CpG dinucleotide. In a comparison of somatic and germline mutational spectra for 17 TS genes, approximately 43% of somatic nonsense mutations had counterparts in the germline (rising to 98% for CpG mutations). Finally, the proportion of disease-causing nonsense mutations predicted to elicit nonsense-mediated mRNA decay (NMD) is significantly higher (P=1.56 x 10(-9)) than among nonobserved (potential) nonsense mutations, implying that nonsense mutations that elicit NMD are more likely to come to clinical attention.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                April 2023
                March 23 2023
                : 24
                : 7
                : 6101
                Article
                10.3390/ijms24076101
                ebf406f3-def7-4d2f-bef1-b18a4f7a1140
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article