61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many pathogenic bacteria live in close association with protozoa. These unicellular eukaryotic microorganisms are ubiquitous in various environments. A number of protozoa such as amoebae and ciliates ingest pathogenic bacteria, package them usually in membrane structures, and then release them into the environment. Packaged bacteria are more resistant to various stresses and are more apt to survive than free bacteria. New evidence indicates that protozoa and not bacteria control the packaging process. It is possible that packaging is more common than suspected and may play a major role in the persistence and transmission of pathogenic bacteria. To confirm the role of packaging in the propagation of infections, it is vital that the molecular mechanisms governing the packaging of bacteria by protozoa be identified as well as elements related to the ecology of this process in order to determine whether packaging acts as a Trojan Horse.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Microorganisms resistant to free-living amoebae.

          Free-living amoebae feed on bacteria, fungi, and algae. However, some microorganisms have evolved to become resistant to these protists. These amoeba-resistant microorganisms include established pathogens, such as Cryptococcus neoformans, Legionella spp., Chlamydophila pneumoniae, Mycobacterium avium, Listeria monocytogenes, Pseudomonas aeruginosa, and Francisella tularensis, and emerging pathogens, such as Bosea spp., Simkania negevensis, Parachlamydia acanthamoebae, and Legionella-like amoebal pathogens. Some of these amoeba-resistant bacteria (ARB) are lytic for their amoebal host, while others are considered endosymbionts, since a stable host-parasite ratio is maintained. Free-living amoebae represent an important reservoir of ARB and may, while encysted, protect the internalized bacteria from chlorine and other biocides. Free-living amoebae may act as a Trojan horse, bringing hidden ARB within the human "Troy," and may produce vesicles filled with ARB, increasing their transmission potential. Free-living amoebae may also play a role in the selection of virulence traits and in adaptation to survival in macrophages. Thus, intra-amoebal growth was found to enhance virulence, and similar mechanisms seem to be implicated in the survival of ARB in response to both amoebae and macrophages. Moreover, free-living amoebae represent a useful tool for the culture of some intracellular bacteria and new bacterial species that might be potential emerging pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy and multivesicular bodies: two closely related partners.

            In the majority of cell types, multivesicular bodies (MVBs) are a special kind of late endosomes, crucial intermediates in the internalization of nutrients, ligands and receptors through the endolysosomal system. ESCRT-0, I, II and III (endosomal sorting complex required for transport) are involved in the sorting of proteins into MVBs, generating the intraluminal vesicles. Autophagy is a lysosomal degradation pathway for cytoplasmic components such as proteins and organelles. The autophagosome, a well-characterized structure of the autophagy pathway, can fuse with endocytic structures such as MVBs to generate the amphisome. Finally, the amphisome fuses with the lysosome to degrade the material wrapped inside. Currently, clear evidence suggests that efficient autophagic degradation requires functional MVBs. This review highlights the most recent advances in our understanding of the molecular machinery that participates in MVB biogenesis and regulates the interplay between autophagy and this organelle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network.

              Free-living amoebae (FLA) are ubiquitous organisms that have been isolated from various domestic water systems, such as cooling towers and hospital water networks. In addition to their own pathogenicity, FLA can also act as Trojan horses and be naturally infected with amoeba-resisting bacteria (ARB) that may be involved in human infections, such as pneumonia. We investigated the biodiversity of bacteria and their amoebal hosts in a hospital water network. Using amoebal enrichment on nonnutrient agar, we isolated 15 protist strains from 200 (7.5%) samples. One thermotolerant Hartmannella vermiformis isolate harbored both Legionella pneumophila and Bradyrhizobium japonicum. By using amoebal coculture with axenic Acanthamoeba castellanii as the cellular background, we recovered at least one ARB from 45.5% of the samples. Four new ARB isolates were recovered by culture, and one of these isolates was widely present in the water network. Alphaproteobacteria (such as Rhodoplanes, Methylobacterium, Bradyrhizobium, Afipia, and Bosea) were recovered from 30.5% of the samples, mycobacteria (Mycobacterium gordonae, Mycobacterium kansasii, and Mycobacterium xenopi) were recovered from 20.5% of the samples, and Gammaproteobacteria (Legionella) were recovered from 5.5% of the samples. No Chlamydia or Chlamydia-like organisms were recovered by amoebal coculture or detected by PCR. The observed strong association between the presence of amoebae and the presence of Legionella (P < 0.001) and mycobacteria (P = 0.009) further suggests that FLA are a reservoir for these ARB and underlines the importance of considering amoebae when water control measures are designed.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Frontiers in microbiology
                Frontiers Media SA
                1664-302X
                1664-302X
                2014
                : 5
                Affiliations
                [1 ] Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada.
                [2 ] Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada ; Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada.
                Article
                10.3389/fmicb.2014.00240
                4033053
                24904553
                dbe4330e-fa8c-4466-a142-499db366238a
                History

                Legionella pneumophila,amoeba,bacteria packaging,multilamellar body,mycobacteria,persistence,protozoa,transmission

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content193

                Cited by28

                Most referenced authors716