12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functional nanomaterials and their potentials in antibacterial treatment of dental caries

      , , , , ,
      Colloids and Surfaces B: Biointerfaces
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references189

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.

          The antimicrobial activity of silver nanoparticles against E. coli was investigated as a model for Gram-negative bacteria. Bacteriological tests were performed in Luria-Bertani (LB) medium on solid agar plates and in liquid systems supplemented with different concentrations of nanosized silver particles. These particles were shown to be an effective bactericide. Scanning and transmission electron microscopy (SEM and TEM) were used to study the biocidal action of this nanoscale material. The results confirmed that the treated E. coli cells were damaged, showing formation of "pits" in the cell wall of the bacteria, while the silver nanoparticles were found to accumulate in the bacterial membrane. A membrane with such a morphology exhibits a significant increase in permeability, resulting in death of the cell. These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphene-based antibacterial paper.

            Graphene is a monolayer of tightly packed carbon atoms that possesses many interesting properties and has numerous exciting applications. In this work, we report the antibacterial activity of two water-dispersible graphene derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Such graphene-based nanomaterials can effectively inhibit the growth of E. coli bacteria while showing minimal cytotoxicity. We have also demonstrated that macroscopic freestanding GO and rGO paper can be conveniently fabricated from their suspension via simple vacuum filtration. Given the superior antibacterial effect of GO and the fact that GO can be mass-produced and easily processed to make freestanding and flexible paper with low cost, we expect this new carbon nanomaterial may find important environmental and clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Types and origins of bacterial membrane vesicles

              Most bacteria release membrane vesicles (MVs) that contain specific cargo molecules and have diverse functions, including the transport of virulence factors, DNA transfer, interception of bacteriophages, antibiotics and eukaryotic host defence factors, cell detoxification and bacterial communication. MVs not only are abundant in nature but also show great promise for applications in biomedicine and nanotechnology. MVs were first discovered to originate from controlled blebbing of the outer membrane of Gram-negative bacteria and are therefore often called outer-membrane vesicles (OMVs). However, recent work has shown that Gram-positive bacteria can produce MVs, that different types of MVs besides OMVs exist and that, in addition to membrane blebbing, MVs can also be formed by endolysin-triggered cell lysis. In this Review, we provide an overview of the structures and compositions of the various vesicle types and discuss novel formation routes, which may lead to distinct vesicle types that serve particular functions.
                Bookmark

                Author and article information

                Journal
                Colloids and Surfaces B: Biointerfaces
                Colloids and Surfaces B: Biointerfaces
                Elsevier BV
                09277765
                October 2022
                October 2022
                : 218
                : 112761
                Article
                10.1016/j.colsurfb.2022.112761
                f05a3265-f039-41db-881d-60b13214439a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article