16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC).

          Methods

          Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis.

          Results

          We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53 -/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model.

          Conclusion

          Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12943-021-01418-3.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2020

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles and Properties of Stress Granules.

            Stress granules are assemblies of untranslating messenger ribonucleoproteins (mRNPs) that form from mRNAs stalled in translation initiation. Stress granules form through interactions between mRNA-binding proteins that link together populations of mRNPs. Interactions promoting stress granule formation include conventional protein-protein interactions as well as interactions involving intrinsically disordered regions (IDRs) of proteins. Assembly and disassembly of stress granules are modulated by various post-translational modifications as well as numerous ATP-dependent RNP or protein remodeling complexes, illustrating that stress granules represent an active liquid wherein energy input maintains their dynamic state. Stress granule formation modulates the stress response, viral infection, and signaling pathways. Persistent or aberrant stress granule formation contributes to neurodegenerative disease and some cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Ki-67 protein: from the known and the unknown.

              The expression of the human Ki-67 protein is strictly associated with cell proliferation. During interphase, the antigen can be exclusively detected within the nucleus, whereas in mitosis most of the protein is relocated to the surface of the chromosomes. The fact that the Ki-67 protein is present during all active phases of the cell cycle (G(1), S, G(2), and mitosis), but is absent from resting cells (G(0)), makes it an excellent marker for determining the so-called growth fraction of a given cell population. In the first part of this study, the term proliferation marker is discussed and examples of the applications of anti-Ki-67 protein antibodies in diagnostics of human tumors are given. The fraction of Ki-67-positive tumor cells (the Ki-67 labeling index) is often correlated with the clinical course of the disease. The best-studied examples in this context are carcinomas of the prostate and the breast. For these types of tumors, the prognostic value for survival and tumor recurrence has repeatedly been proven in uni- and multivariate analysis. The preparation of new monoclonal antibodies that react with the Ki-67 equivalent protein from rodents now extends the use of the Ki-67 protein as a proliferation marker to laboratory animals that are routinely used in basic research. The second part of this review focuses on the biology of the Ki-67 protein. Our current knowledge of the Ki-67 gene and protein structure, mRNA splicing, expression, and cellular localization during the cell-division cycle is summarized and discussed. Although the Ki-67 protein is well characterized on the molecular level and extensively used as a proliferation marker, the functional significance still remains unclear. There are indications, however, that Ki-67 protein expression is an absolute requirement for progression through the cell-division cycle. Copyright 2000 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Haichang.Li@osumc.edu
                Jianjie.Ma@osumc.edu
                Journal
                Mol Cancer
                Mol Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                14 September 2021
                14 September 2021
                2021
                : 20
                : 118
                Affiliations
                [1 ]GRID grid.261331.4, ISNI 0000 0001 2285 7943, Department of Surgery, , The Ohio State University College of Medicine, ; Columbus, OH 43210 USA
                [2 ]GRID grid.264091.8, ISNI 0000 0001 1954 7928, Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, , St. John’s University, ; Queens, NY 11439 USA
                Author information
                http://orcid.org/0000-0003-3865-6112
                Article
                1418
                10.1186/s12943-021-01418-3
                8439062
                41d8efa4-54f7-4ce1-8b08-cf31c286b339
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 March 2021
                : 28 August 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                mg53,g3bp2,cisplatin,stress granules (sgs),non-small cell lung cancer (nsclc)

                Comments

                Comment on this article