47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex on the brain! Associations between sexual activity and cognitive function in older age

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: the relationship between cognition and sexual activity in healthy older adults is under-researched. A limited amount of research in this area has shown that sexual activity is associated with better cognition in older men. The current study explores the possible mediating factors in this association in men and women, and attempts to provide an explanation in terms of physiological influences on cognitive function.

          Methods: using newly available data from Wave 6 of the English Longitudinal Study of Ageing, the current study explored associations between sexual activity and cognition in adults aged 50–89 ( n = 6,833). Two different tests of cognitive function were analysed: number sequencing, which broadly relates to executive function, and word recall, which broadly relates to memory.

          Results: after adjusting for age, education, wealth, physical activity, depression, cohabiting, self-rated health, loneliness and quality of life, there were significant associations between sexual activity and number sequencing and recall in men. However, in women there was a significant association between sexual activity and recall, but not number sequencing.

          Conclusions: possible mediators of these associations (e.g. neurotransmitters) are discussed. The cross-sectional nature of the analysis is limiting, but provides a promising avenue for future explorations and longitudinal studies. The findings have implications for the promotion of sexual counselling in healthcare settings, where maintaining a healthy sex life in older age could be instrumental in improving cognitive function and well-being.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sensory receptors—design principles revisited

          This research topic was aimed toward collecting the present knowledge of structure and function of sensory receptors in animal kingdom as well as the mechanisms of signal transduction and amplification. To translate external signals such as light, sound, smell, etc., into an appropriate intracellular signal, sensory receptors use either a fast, direct or a slow, indirect way. These qualitatively different signal transduction pathways are now usually called ionotopic or metabotropic. Historically, the term metabotropic receptor has been introduced to distinguish a subtype of glutamate receptors that triggers chemical reactions (cell metabolism) in the postsynaptic cell from other glutamate receptors that pass an ion current (ionotropic) (Eccles and McGeer, 1979). Metabotropic glutamate receptors were found to be linked to inositol phospholipid metabolism (Sugiyama et al., 1987), and were subsequently identified as G-protein-coupled receptors (GPCRs) (Masu et al., 1991). The terminology ionotropic/metabotropic has been extended to other neurotransmitter receptors, such as for nicotinic/muscarinergic acetyl choline or GABAA/GABAB receptors. All metabotropic neurotransmitter receptors are GPCRs. There are, however, a large number of non-GPCRs that also fulfill the original definition for a metabotropic receptor, namely “that the transmitter acts indirectly, by triggering a chemical reaction or a series of reactions” (Eccles and McGeer, 1979). Accordingly, it has been used to extent the term metabotropic receptor to receptor kinases, receptor cyclases, etc., as well. Sensory receptors are often part of complex signal transduction cascades. An ion current through an ionotropic receptor may initiate metabotropic signaling, as well as a metabotropic receptor may downstream affect the function of ion channels. An example for protein–protein interaction in chemosensation is given in the original article by Liu et al. (2012). The authors identified so far unknown binding partners of Gγ13, a G-protein subunit expressed in mammalian taste and olfactory receptor cells. These binding partners are PDZ-domain containing proteins assumed to target Gγ13 to specific subcellular locations or represent parts of the chemosensory signal transduction cascade. The evolution of chemoreceptors shows that—from bacteria to mammals—both, ionotropic as well as metabotropic mechanisms were conserved. Functional aspects of chemoreceptors, including the interaction of electrical and chemical signaling, and the amplification of sensory information are discussed in the perspective article (Wicher, 2012). Intriguingly, insect chemoreceptors operate as ionotropic receptors, namely odorant receptors (ORs), ionotropic glutamate-like receptors (IRs), and gustatory receptors (GRs). Getahun et al. (2012) investigate the temporal response dynamics of insect chemoreceptors and demonstrate that olfactory sensory neurons (OSNs) expressing ORs, GRs, or IRs differ in their response kinetics to brief stimuli. OR-expressing neurons respond faster and with higher sensitivity, while IR-expressing neurons do not adapt to long stimulations. Although ORs primarily operate as ionotropic receptors, metabotropic signaling was seen to modulate the ionotropic odor response (Olsson et al., 2011; Sargsyan et al., 2011). Stimulation of cAMP production enhanced the response to a given odor concentration, corresponding to an increased sensitivity. This type of modulation may constitute the mechanistic basis for the higher sensitivity of ORs compared with IRs. Chemical information released from different sources may interfere during processing in the nervous system and affect the response of an organism. Odor mixtures can act in synergistic or in an inhibitory way. On the level of the chemoreceptors the existence of a huge number of different chemical signal molecules leads to the intriguing question of receptor specificity and whether a given chemical signal is perceived independent of the background. The interaction of odorant and pheromone detection in moths is reported by Pregitzer et al. (2012) and commented by Anton and Renou (2012). Certain plant odors are known to inhibit the activation of pheromone receptors. The reported investigations provide evidence that the odorant-pheromone interaction already takes place at the receptor level. Since the first editorial to this topic was written in 2010 recent progress shed new light on structure and function of certain receptors. Channelrhodopsins, for example, are photoreceptors in green algae which conduct a current upon illumination. They are seven transmembrane (7-TM)-spanning proteins as typical for GPCRs but do not couple to a heterotrimeric G-protein. With the given 7-TM topology it was as yet not clear how the channelrhodopsin proteins have to arrange to form an ion channel. Recently, the non-selective cation channel, channelrhodopsin-2 from Chlamydomonas reinhardtii has been successfully crystallized (Müller et al., 2011; Kato et al., 2012). The channelrhodopsin-2 proteins were found to stably dimerize in such an arrangement that the third and the fourth TM helix of each protein align to a tetramer thereby lining the cation-permeable pore. Another example for ion channel-forming 7-TM proteins are the above mentioned insect ORs. In contrast to homodimeric channelrhodopsin channels they are heterodimers, composed of variable, odorant-binding protein OrX, and an ubiquitous co-receptor OrCo. There is growing evidence that both OR proteins contribute to channel pore formation and determine their properties such as the ion permeability and pharmacological properties (Nichols et al., 2011; Pask et al., 2011; Nakagawa et al., 2012). It remains to be established whether OrCo form homomeric channels in the receptor neurons as seen in the heterologous expression system and whether they represent the metabotropic pathway used to tune the sensitivity of the ionotropic receptor (Olsson et al., 2011; Sargsyan et al., 2011). The role of stimulatory G-proteins in olfactory signaling has been demonstrated (Deng et al., 2011), and also downstream signaling such as cAMP production were seen to affect the odor response of receptor neurons (Olsson et al., 2011). These recent findings on insect OR function modify the view to classify them. While in the first editorial they have been considered as combined metabotropic and ionotropic receptors, they might now be more appropriately characterized as metabotropically regulated ionotropic receptors. This change of view illustrates the highly dynamic development in the field.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sexual activity and cardiovascular disease: a scientific statement from the American Heart Association.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gender Differences in Human Brain: A Review

                Bookmark

                Author and article information

                Journal
                Age Ageing
                Age Ageing
                ageing
                ageing
                Age and Ageing
                Oxford University Press
                0002-0729
                1468-2834
                March 2016
                28 January 2016
                28 January 2016
                : 45
                : 2
                : 313-317
                Affiliations
                [1 ]Centre for Research in Psychology, Behaviour and Achievement, Coventry University , Coventry CV1 5FB, UK
                [2 ]Psychological, Social and Behavioural Sciences, Coventry University , Coventry, UK
                Author notes
                Address correspondence to: H. Wright. Tel: (+44) 0 2477 659369. Email: hayley.wright@ 123456coventry.ac.uk
                Article
                afv197
                10.1093/ageing/afv197
                4776624
                26826237
                8be41363-82b4-47c9-abd5-7662532d4224
                © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 20 July 2015
                : 26 November 2015
                Categories
                Short Reports

                Geriatric medicine
                cognition,sexual activity,ageing,gender differences,english longitudinal study of ageing (elsa),older people

                Comments

                Comment on this article